Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants

콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용

  • Park, Sei-Joon (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Kim, Hyun-Hee (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Ko, Tae-Seok (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Shim, Myong-Yong (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Yoo, Sung-Yung (Sejong Institute of Data Analysis (SEIDA)) ;
  • Park, So-Hyun (Sejong Institute of Data Analysis (SEIDA)) ;
  • Kim, Tae-Gyeong (School of Plant Life and Environmental Science, Department of Phytomedicine, Hankyong National University) ;
  • Eom, Ki-Cheol (Sejong Institute of Data Analysis (SEIDA)) ;
  • Hong, Sun-Hee (School of Ecological and Environmental Science, Korea University) ;
  • Kim, Tae-Wan (Institute of Ecological Phytochemistry, Hankyong National University)
  • 박세준 (한경대학교 식물생태화학연구소) ;
  • 김현희 (한경대학교 식물생태화학연구소) ;
  • 고태석 (한경대학교 식물생태화학연구소) ;
  • 심명룡 (한경대학교 식물생태화학연구소) ;
  • 유성녕 (세종데이터해석연구원) ;
  • 박소현 (세종데이터해석연구원) ;
  • 김태경 (한경대학교 식물생의약전공) ;
  • 엄기철 (세종데이터해석연구원) ;
  • 홍선희 (고려대학교 환경생태공학부) ;
  • 김태완 (한경대학교 식물생태화학연구소)
  • Received : 2010.05.12
  • Accepted : 2010.06.12
  • Published : 2010.06.30

Abstract

Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restricted irrigations of 200 and 50 ml water $pot^{-1}\;d^{-1}$ for 5 days for a control and a drought stress, respectively, and a sodium chloride solution of 200 mmol for 6 days for a salt stress. The intact leaves of the two cultivars after treatment were used to measure chlorophyll fluorescence parameters, maximum efficiencies of photosystem II photochemistry (Fv/Fm), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), $CO_2$ assimilation rate ($P_N$), and NPQ. Leaf water potentials of the two cultivars decreased from - 0.2 to - 0.8MPa by a drought treatment and from - 0.7 to - 1.7MPa by a salt treatment. Leaf water content of Shinpaldalkong 2 after a salt treatment was less decreased than that of Taekwangkong. $F_v/F_m$ values of both cultivars were not changed, while ${\Phi}_{PSII}$ and $P_N$ were decreased proportionally to leaf water potential decrease. The response of NPQ was occurred in Shinpaldalkong 2 under the drought and salt stresses. With Taekwangkong cultivar, only drought stress referred NPQ response. The cultivar differences on chlorophyll fluorescence parameters were found in the relationships between ${\Phi}_{PSII}$ and $P_N$, and between NPQ and ${\Phi}_{PSII}$. Although the positive relationships between ${\Phi}_{PSII}$ and $P_N$ were established on all treatments of both cultivars, the decreasing rate of ${\Phi}_{PSII}$ to $P_N$ was smaller in Shinpaldalkong 2 than Taekwangkong. The NPQ was increased according to the decrease of ${\Phi}_{PSII}$ by osmotic treatments in Shinpaldalkong 2. The complementary relationships between NPQ and ${\Phi}_{PSII}$ were well maintained at all treatments in Shinpaldalkong 2, while these relationships were lost at a salt treatment in Taekwangkong. Taken together, the results suggest that analysis of complementary relationships between ${\Phi}_{PSII}$ and NPQ could be more valuable and applicable for determining osmotic tolerance than single analysis of each parameter such as $F_v/F_m$, ${\Phi}_{PSII}$ and NPQ.

한발과 염 스트레스에 대한 콩의 저항성 검정에 있어서 Non-photochemical quenching (NPQ)을 적용하기 위하여, 저항성 콩 (신팔달콩 2호)와 대조구 콩 (태광콩)을 이용하여 제한적 관수 (50 m/pot/day) 와 염 (200 mmol NaCl) 처리를 한 후, 엽록소 형광반응의 변수, maximum efficiencies of photosystem II photochemistry ($F_v/F_m$), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), NPQ와 $CO_2$ 동화율 ($P_N$) 을 측정하였다. 콩 두 품종의 엽 수분포텐셜은 한발처리에서 -0.2 MPa에서 -0.8 MPa로, 염처리에서는 -0.7 MPa에서 -1.7 MPa로 감소하였다. 염처리에서 엽 수분함량의 감소는 신팔달콩 2호에서 적었다. 두 품종 모두 엽의 수분포텐셜이 감소함에 따라 $F_v/F_m$은 변화가 없었으며, ${\Phi}_{PSII}$$P_N$는 감소하였다. NPQ의 경우, 신팔달콩 2호은 한발과 염처리에 모두에서 반응이 나타난 반면, 태광콩에서는 한발처리에서만 나타났다. 두 품종의 모든 처리에서 ${\Phi}_{PSII}$$P_N$간에 정의 상관 관계를 보였으나, $P_N$의 감소에 대한 ${\Phi}_{PSII}$의 감소 정도가 신팔달콩 2호에서 적었다. 또한 삼투처리에 따른 ${\Phi}_{PSII}$의 감소와 NPQ의 증가는 신팔달콩 2호에서만 나타나 ${\Phi}_{PSII}$와 NPQ 간의 부의 관계가 유지된 반면, 태광콩에서는 염처리에서 이들간의 연관성이 없었다. 따라서 본 연구는 삼투 저항성의 검정에 있어서 엽록소 형광반응의 단일변수($F_v/F_m$, ${\Phi}_{PSII}$, 및 NPQ)의 이용보다 ${\Phi}_{PSII}$와 NPQ 의 상호관계 분석이 더 유효한 것을 제시하였다.

Keywords

References

  1. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant. mol. Biol. 50:601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  2. Backhausen, J.E., M. Klein, M. Klocke, S. Jung, and R. Scheibe. 2005. Salt tolerance of potato (Solanum tuberosum L. var. Desiree) plants depends on light intensity and air humidity. Plant Sci. 169:229-237. https://doi.org/10.1016/j.plantsci.2005.03.021
  3. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  4. Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants. Critical Rev. Plant Sci. 24:23-58. https://doi.org/10.1080/07352680590910410
  5. Belkhodja, R., F. Morales, A. Abadía, H. Medrano, and J. Abadía. 1999. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36:375-387. https://doi.org/10.1023/A:1007019918225
  6. Biehler, K., S. Haupt, J. Beckmann, H. Fork, and T.W. Becker. 1997. Simultaneous $CO_2$- and ${16}^O_2/{18}^O_2$-gas exchange and fluorescence measurements indicate differences in light energy dissipation between the wild type and the phytochromedeficient aurea mutant of tomato during water stress. J. Exp. Bot. 48:1439-1449. https://doi.org/10.1093/jxb/48.7.1439
  7. Bilger, W., and O. Bjorkman. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25:173-185. https://doi.org/10.1007/BF00033159
  8. Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodriques, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field. photosynthesis and growth. Ann. Bot. 89:907-916. https://doi.org/10.1093/aob/mcf105
  9. Clavel, D., O. Diouf, J.L. Khalfaoui, and S. Braconnier. 2006. Genotypes variations in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Res. 96:296-306. https://doi.org/10.1016/j.fcr.2005.07.012
  10. Colom, M.R. and C. Vazzana. 2003. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 49:135-144. https://doi.org/10.1016/S0098-8472(02)00065-5
  11. Cornic G. and C. Fresneau. 2002. Photosynthetic carbon reduction and carbon oxidation cycles are main electron sinks for photosystem II activity during a mild drought. Ann. Bot. 89:887-894. https://doi.org/10.1093/aob/mcf064
  12. Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends Plant Sci. 5:187-188. https://doi.org/10.1016/S1360-1385(00)01625-3
  13. Correia, M.J., M.L. Osório, J. Osório, I. Barrote, M. Martins, and M.M. David, 2006. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ. Exp. Bot. 58:75-84. https://doi.org/10.1016/j.envexpbot.2005.06.015
  14. Demiral, T. and I. Türkan. 2006. Exogenous glycinebetaine affects growth and praline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot. 56:72-79. https://doi.org/10.1016/j.envexpbot.2005.01.005
  15. Demmig-Adams, B. and W.W. Adams. 2006. III: Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation. New Phytologist 172:11-21. https://doi.org/10.1111/j.1469-8137.2006.01835.x
  16. Demmig-Adams, B. and W. W.Adams. 1996. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1:21-26. https://doi.org/10.1016/S1360-1385(96)80019-7
  17. Flexas, J., J. Bota, J. Galmés, H. Medrano, and M. Ribas-Carbó. 2006. Keeping a positive carbon balance under adverse conditions: responses pf photosynthesis and respiration to water stress. Physiol. Plant. 127:343-352. https://doi.org/10.1111/j.1399-3054.2006.00621.x
  18. Flexas, J. and H. Medrano. 2002. Drought-inhibition of photosynthesis in $C_3$ Plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89:183-189. https://doi.org/10.1093/aob/mcf027
  19. Foyer, C.H. and G. Noctor. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytologist 146:359-388. https://doi.org/10.1046/j.1469-8137.2000.00667.x
  20. Gentry, B., J.M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  21. Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycledependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99:197-209. https://doi.org/10.1111/j.1399-3054.1997.tb03449.x
  22. Holt, N.E., G.R. Fleming, and K.K. Niyogi. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281-8289. https://doi.org/10.1021/bi0494020
  23. Havaux, M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 3:147-151. https://doi.org/10.1016/S1360-1385(98)01200-X
  24. Jiang, Q., D. Roche, T.A. Monaco, and S. Durham. 2006. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res. 96:269-278. https://doi.org/10.1016/j.fcr.2005.07.010
  25. Jung, S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci. 166:459-466. https://doi.org/10.1016/j.plantsci.2003.10.012
  26. Kao, W.Y., T.T. Tsai, and C.N. Shin. 2003. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415-419.
  27. Kocheva, K., P. Lambrev, G. Georgiev, V. Goltsev, and M. Karabaliev. 2004. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121-124. https://doi.org/10.1016/j.bioelechem.2003.09.020
  28. Laisk, A., V. Oja, B. Rasulov, H. Eichelmann, and A. Sumberg. 1997. Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching. Plant Physiol. 115:803-815.
  29. Lauriano, J.A., J.C. Ramalho, F.C. Lidon, and M. do Ceu Matos. 2006. Mechanisms of energy dissipation under water stress. Photosynthetica 44:404-410. https://doi.org/10.1007/s11099-006-0043-4
  30. Lawlor, D.W. 2002. Limitation to photosynthesis in waterstressed leaves: Stomata vs. metabolism and the role of ATP. Ann. Bot. 89:871-885. https://doi.org/10.1093/aob/mcf110
  31. Lee, G., R.N. Carrow, and R.R. Duncan. 2004. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci. 166:1417-1425. https://doi.org/10.1016/j.plantsci.2003.12.029
  32. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  33. Lu, C. and J. Zhang. 1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J. Exp. Bot. 50:1199-1206.
  34. M'rah, S., Z. Ouerghi, C. Berthomieu, M. Havaux, C. Jungas, M. Hajji, C. Grignon, and M. Lachaâl. 2006. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J. Plant Physiol. 163: 1022-1031. https://doi.org/10.1016/j.jplph.2005.07.015
  35. Maury, P., F. Mojayad, M. Berger, and C. Planchon. 1996. Photochemical response to drought acclimation in two sunflower genotypes. Physiol. Plant. 98:57-66. https://doi.org/10.1111/j.1399-3054.1996.tb00675.x
  36. Maxwell K. and G.N. Johnson. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
  37. Medrano, H., J.M. Escalona, J. Bota, J. Gulías, and J. Flexas. 2002. Regulation of photosynthesis of $C_3$ plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 89:895-905. https://doi.org/10.1093/aob/mcf079
  38. Melkonian, J., T.G. Owens, and D.W. Wolfe. 2004. Gas exchange and co-regulation of photochemical and nonphotochemical quenching in bean during chilling at ambient and elevated carbon dioxide. Photosynth. Res. 79:71-82.
  39. Miyashita, K., S. Tanakamaru, T. Maitani, and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Exp. Bot. 53:205-214. https://doi.org/10.1016/j.envexpbot.2004.03.015
  40. Morant-Manceau, A., E. Pradier, and G. Tremblin. 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J. Plant Physiol. 161:25-33. https://doi.org/10.1078/0176-1617-00963
  41. Munns, R. 2002. Comparative physiology of salt and water stress. – Plant Cell Environ. 25:239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  42. Muranaka, S., K. Shimizu, and M. Kato. 2002. A salt-tolerance cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica 40:509-515.
  43. Netondo, G.W., J.C. Onyango, and E. Beck. 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 44:806-811. https://doi.org/10.2135/cropsci2004.0806
  44. Niyogi, K.K. 1999. Photoprotection revised: Genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant. mol. Biol. 50:333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
  45. Niyogi, K.K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455-460. https://doi.org/10.1016/S1369-5266(00)00113-8
  46. Niyogi, K.K., X.P. Li, V. Rosenberg, and H.S. Jung. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56:375-382.
  47. Noctor, G., S. Veljoviv-Jovanovic, S. Driscill, L. Novitskaya, and C.H. Foyer. 2002. Drought and oxidative load of C3 plants: A predominant role for photorespiration? Ann. Bot. 89:841-850. https://doi.org/10.1093/aob/mcf096
  48. Ort, D.R., and N.R. Baker. 2002. A photoprotective role for $O_2$ as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5:193-198. https://doi.org/10.1016/S1369-5266(02)00259-5
  49. Osorio, M.L., E. Breia, A. Rodrigues, J. Osório, X. Le Roux, F.A. Daudet, I. Ferreira, and M.M. Chaves. 2006. Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ. Exp. Bot. 55: 235-247. https://doi.org/10.1016/j.envexpbot.2004.11.003
  50. Praxedes, S.C., F. DaMatta, M.E. Loureiro, M.A.G. Ferrão, and A.T. Cordeiro. 2006. Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ. Exp. Bot. 56:263-273. https://doi.org/10.1016/j.envexpbot.2005.02.008
  51. Souza, R.P., E.C. Machado, J.A.B. Silva, A.M.M. A. Lagoa, and J.A.G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51:45-56. https://doi.org/10.1016/S0098-8472(03)00059-5
  52. Stepien, P. and G. Klobus. 2006. Water relations and photosynthesis in Cucumis sativa L. leaves under salt stress. Biol. Plant. 50:610-616. https://doi.org/10.1007/s10535-006-0096-z
  53. Štroch, M., V. Špunda, and I. Kurasová. 2004. Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 42:323-337.
  54. Wingler, A., M. Mares, and N. Pourtau. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytologist 161:781-789. https://doi.org/10.1111/j.1469-8137.2004.00996.x
  55. Yang, Y., D.A. Jiang, H.X. Xu, C.Q. Yan, and S.R. Hao. 2006. Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biol. Plant. 50:586-590. https://doi.org/10.1007/s10535-006-0092-3