• Title/Summary/Keyword: drought index

Search Result 522, Processing Time 0.037 seconds

Numerical Investigations of Physical Habitat Changes for Fish induced by the Hydropeaking in the Downstream River of Dam (댐 하류 하천에서 발전방류로 인한 어류 물리서식처 변화 수치모의)

  • Kang, Hyeongsik;Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.211-217
    • /
    • 2010
  • This paper presents numerical investigations of the physical habitat changes induced by the hydropeaking in the downstream river of dam. For the two-dimensional ecohydraulic simulations, River2D model is used. Pirami (Zacco platypus) is selected as the target fish for investigating the impact of the hydropeaking. For validation of the model, the water surface elevations are simulated with two different water discharges. The computed results are compared with field data in the literature, and the result shows that the model successfully simulates the water flows. The weight usable area (WUA) of Pirami with the life cycle and the composite suitability index with different water discharges are computed and discussed. The results show that habitat for Pirami appears to be best in the bend region downstream of the dam. The discharge of the maximum WUA for adult Pirami is computed to be about 9 $m^3/s$. Also, the WUA computed in a condition of hydropeaking during seven days are presented. The averaged discharge of the hydropeaking appears to be about 20% larger than the drought flow, but the WUA by the hydropeaking is computed to be 60-100% smaller. This result shows that the hydropeaking reduces quantity of habitat available to fish.

Development and Application of a Methodologyfor Climate Change Vulnerability Assessment-Sea Level Rise Impact ona Coastal City (기후변화 취약성 평가 방법론의 개발 및 적용 해수면 상승을 중심으로)

  • Yoo, Ga-Young;Park, Sung-Woo;Chung, Dong-Ki;Kang, Ho-Jeong;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.185-205
    • /
    • 2010
  • Climate change vulnerability assessment based on local conditions is a prerequisite for establishment of climate change adaptation policies. While some studies have developed a methodology for vulnerability assessment at the national level using statistical data, few attempts, whether domestic or overseas, have been made to develop methods for local vulnerability assessments that are easily applicable to a single city. Accordingly, the objective of this study was to develop a conceptual framework for climate change vulnerability, and then develop a general methodology for assessment at the regional level applied to a single coastal city, Mokpo, in Jeolla province, Korea. We followed the conceptual framework of climate change vulnerability proposed by the IPCC (1996) which consists of "climate exposure," "systemic sensitivity," and "systemic adaptive capacity." "Climate exposure" was designated as sea level rises of 1, 2, 3, 4, and 5 meter(s), allowing for a simple scenario for sea level rises. Should more complex forecasts of sea level rises be required later, the methodology developed herein can be easily scaled and transferred to other projects. Mokpo was chosen as a seaside city on the southwest coast of Korea, where all cities have experienced rising sea levels. Mokpo has experienced the largest sea level increases of all, and is a region where abnormal high tide events have become a significant threat; especially subsequent to the construction of an estuary dam and breakwaters. Sensitivity to sea level rises was measured by the percentage of flooded area for each administrative region within Mokpo evaluated via simulations using GIS techniques. Population density, particularly that of senior citizens, was also factored in. Adaptive capacity was considered from both the "hardware" and "software" aspects. "Hardware" adaptive capacity was incorporated by considering the presence (or lack thereof) of breakwaters and seawalls, as well as their height. "Software" adaptive capacity was measured using a survey method. The survey questionnaire included economic status, awareness of climate change impact and adaptation, governance, and policy, and was distributed to 75 governmental officials working for Mokpo. Vulnerability to sea level rises was assessed by subtracting adaptive capacity from the sensitivity index. Application of the methodology to Mokpo indicated vulnerability was high for seven out of 20 administrative districts. The results of our methodology provides significant policy implications for the development of climate change adaptation policy as follows: 1) regions with high priority for climate change adaptation measures can be selected through a correlation diagram between vulnerabilities and records of previous flood damage, and 2) after review of existing short, mid, and long-term plans or projects in high priority areas, appropriate adaptation measures can be taken as per this study. Future studies should focus on expanding analysis of climate change exposure from sea level rises to other adverse climate related events, including heat waves, torrential rain, and drought etc.

  • PDF

Evaluation of Water Stress Using Canopy Temperature and Crop Water Stress Index (CWSI) in Peach Trees (복숭아나무의 엽온 및 작물수분스트레스 지수를 이용한 수분스트레스 평가)

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Do, Yun Soo;Song, Seung-Yeob;Kim, Minyoung;Choi, Yonghun;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.20-27
    • /
    • 2020
  • The study was performed to calculate canopy temperatures and crop water stress index (CWSI) of 2-year-old 'Yumi' peach trees using thermal infrared imaging under different soil water conditions, and to evaluate availability for water stress determination. Canopy temperatures showed similar daily variations to air temperatures and they were higher during the daytime than air temperatures. Canopy temperatures for 24 h were correlated highly to air temperatures (r2 =0.95), solar radiations (r2 =0.74), and relative humidity (r2 =-0.88). In addition, soil water potential showed a highly negative correlation to canopy temperatures (r2 =-0.57), temperature differences between leaf and air (TD) (r2 =-0.71), and CWSI (r2 =-0.72) during the daytime (11 to 16 h). CWSI for 24 h was highly related to canopy temperatures (r2 =0.90) and TD (r2 =0.92), whereas CWSI was not correlated to soil water potential (r2 =-0.27) for 24 h but related highly to water potential (r2 =-0.72) during the daytime (11 to 16 h). Correlation coefficients between CWSI (y) and soil water potential (x) were highest from 11 to 12 h and a regression equation was deduced as y = -0.0087x + 0.14. CWSI was calculated as 0.575 at -50 kPa, which soil water stress generally occurs. Thus our result suggests that this regression equation using thermal infrared imaging is useful to evaluate soil water stress of peach trees.

Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity (폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Lee, Chang-Eun;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • Objective of this study was to assess rice growth and percolation water salinity under the irrigation of the discharge waters from the municipal wastewater treatment plant and from the industrial wastewater treatment plant as alternative water resources during transplanting season. Three kinds of waters were irrigated; the discharge water from an industrial wastewater treatment plant (DIWT), the discharge water from the municipal wastewater treatment plant (DMWT), and groundwater. Concentrations of $COD_{er}$, $NH_4{^+}_-N$, $Mn^{2+}$, and $Ni^+$ in DIWT, SS content and $PO_4-P$ concentrations in DMWT were higher than those of reuse water criteria of other country for agricultural irrigation. The plant height in the irrigation of DMWT was shorter by 2 cm than the groundwater irrigation except for 10 days irrigation. However, the number of tillerings was not significantly different between DMWT and the groundwater. For the harvest index, there were no significant difference between DMWT and DIWT for 20 days irrigation, but slightly higher in DIWT than that of DMWT for 30 days irrigation regardless of soil types. The salinity of percolation water in the rhizosphere with irrigation of DIWT had more twofold than DMWT, but SAR value from DMWT had no significantly different from the groundwater irrigation. The average $EC_i$ values in the rooting zone irrigated with DIWT and DMWT for 30 days after rice transplanting were 4.7 and $3.4dS\;m^{-1}$ in clay loam soil, and were 3.5 and $2.5dS\;m^{-1}$ in sandy loam soil, respectively. There was dramatic decrease in $EC_i$ value at 30 days after rice transplanting even though $EC_i$ of DIWT had more twofold than DMWT. However, $EC_i$ from DMWT had no significant difference from the groundwater. Therefore, it might be considered that there was limited possibility to irrigate DMWT to overcome drought injury of rice transplanting season in paddy field.

Resistance Resources for the Foxglove Aphid in Soybeans (콩에서 흡즙해충 싸리수염진딧물 저항성 자원의 발굴)

  • Koh, Hong-Min;Park, Sumin;Kim, Kyung Hye;Kim, Ji Min;Lee, Taeklim;Heo, Jinho;Lee, Ju Seok;Jung, Jinkyo;Kang, Sungteag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.257-264
    • /
    • 2018
  • The recent global climate change induced the drought, flooding, and insect pest outbreaks. These caused the severe damage to crop yield in the domesticated field and occurrence change of insect pest species. The sap-sucking insect pest, aphids are common in soybean [Glycine max (L.) Merr.] and cause serious yield losses. Thus, developing resistance cultivars is promising and efficient strategy to prevent the significant yield losses by aphid and screening germplasm is the essential procedure to achieve this goal. We tried to establish a resistance test indicator for foxglove aphid, Aulacorthum solani (Kaltenbach), in soybean and found that plant damage degree or infested plant damage is most suitable one. Also we screened around 1,200 of soybean germplasm including wild and cultivated species for its resistance to foxglove aphid from the various origins, and 67 soybeans, including PI 366121, showed antixenosis resistance, 31 germplasms among 67 antixenosis germplasms were showed antibiosis to foxglove aphid with non-choice test. The identified foxglove aphid resistant soybean resources showed significantly low rate in survival test. Furthermore, resistance type, (i.e., antibiosis or antixenosis) of each candidate were varied. In this research, we established the screening index for foxglove aphid resistance in soybean, and identified the resistance varieties. This result could be useful resources in breeding for new foxglove aphid resistance soybean cultivars, and provide fundamental information to investigate the resistance mechanism in soybean.

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings (규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Si-Hong;Kim, Seung-Yeon;Choi, Ki-Young;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.

Synoptic Climatological Characteristics of Spring Droughts in Korea (한국의 춘계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • The purpose of this study is to identify distributional characteristics of climatic elements and to analyze synoptic characteristics on the pressure fields for spring droughts in Korea. In the distributions of minimum temperature during the spring droughts, positive anomalies and negative anomalies are mixed up, but in March the negative anomaly areas are widely distributed in Korea. It implies that the droughts of March have more frequent occurrences of the west-high, east-low pressure patterns. In the maximum air temperatures, the positive anomalies appear in Korea. It indicates that the spring droughts have rain days, cloud amount and humidities less than normal. As a result, the amount of evaporation is increased in Korea. In the pressure anomaly of surface pressure fields, the positive anomalies appear in the west, negative anomalies in the east in March, but in May the positive anomalies appeared zonally around the Korean peninsula. It indicates that March droughts have more frequent occurrences of the west-high. east-low patterns, but in May the Korean Peninsula has more frequent recurrences of the migratory anticyclone patterns. The height anomaly patterns of 500hPa pressure surface in spring droughts are similarly shown to those of surface fields. In March droughts, the positive height anomalies appear in the west, the negative height anomalies in the east, but in April the negative height anomaly areas are extended to the west part. In May the positive anomalies appear zonally around the Korean Peninsula, and strong positive height anomalies appear around the Kamchatka Peninsula and the sea of Okhotsk. These are the result of circulations that inhibit the eastward movement of westerlies and that has persistent anticyclone circulation patterns around the Korean Peninsula. As a result, the zonal indices of westerlies during March and April droughts are lower than normal, but higher in May. These data indicate that early spring droughts are associated with weak zonal flow, but the late spring droughts are obviously related with strong zonal flow. In addition, during early spring droughts the abnormally deep trough over the west coast of the North Pacific Ocean that accompanied the anticyclone was associated with frequent advection of air from the dry regions in the Central Asia into the Korean Peninsula. The atmospheric circulation patterns at the height of the 500hPa pressure surface in May was quite different from March and April circulation patterns. Instead of the abnormal ridge in the west and trough in the east, the circulation pattern in May was characterized by a much stronger than normal anticyclone over the Korean Peninsula. Also, the zonal indices of westerlies in May are higher than normal. The occurrences of drought in early spring, therefore, have mechanism different from those of late spring.

  • PDF

Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX (SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석)

  • Kim, Yong Won;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.905-916
    • /
    • 2018
  • The purpose of this study is to evaluate the climate change impact on watershed hydrology and flow duration in Geum River basin ($9,645.5km^2$) especially by extreme scenarios. The rainfall related extreme index, STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes) was adopted to select the future extreme scenario from the 10 GCMs with RCP 8.5 scenarios by four projection periods (Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100). As a result, the 5 scenarios of wet (CESM1-BGC and HadGEM2-ES), normal (MPI-ESM-MR), and dry (INM-CM4 and FGOALS-s2) were selected and applied to SWAT (Soil and Water Assessment Tool) hydrological model. The wet scenarios showed big differences comparing with the normal scenario in 2080s period. The 2080s evapotranspiration (ET) of wet scenarios varied from -3.2 to +3.1 mm, the 2080s total runoff (TR) varied from +5.5 to +128.4 mm. The dry scenarios showed big differences comparing with the normal scenario in 2020s period. The 2020s ET for dry scenarios varied from -16.8 to -13.3 mm and the TR varied from -264.0 to -132.3 mm respectively. For the flow duration change, the CFR (coefficient of flow regime, Q10/Q355) was altered from +4.2 to +10.5 for 2080s wet scenarios and from +1.7 to +2.6 for 2020s dry scenarios. As a result of the flow duration analysis according to the change of the hydrological factors of the Geum River basin applying the extreme climate change scenario, INM-CM4 showed suitable scenario to show extreme dry condition and FGOALS-s2 showed suitable scenario for the analysis of the drought condition with large flow duration variability. HadGEM2-ES was evaluated as a scenario that can be used for maximum flow analysis because the flow duration variability was small and CESM1-BGC was evaluated as a scenario that can be applied to the case of extreme flood analysis with large flow duration variability.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Evaluation of waterlogging tolerance using chlorophyll fluorescence reaction in the seedlings of Korean ginseng (Panax ginseng C. A. Meyer) accessions (엽록소 형광반응을 이용한 인삼 유전자원의 습해 스트레스 평가)

  • Jee, Moo Geun;Hong, Young Ki;Kim, Sun Ick;Park, Yong Chan;Lee, Ka Soon;Jang, Won Suk;Kwon, A Reum;Seong, Bong Jae;Kim, Me-Sun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.240-249
    • /
    • 2022
  • Measuring chlorophyll fluorescence (CF) is a useful tool for assessing a plant's ability to tolerate abiotic stresses such as drought, waterlogging and high temperature. Korean ginseng is highly sensitive to water stress in paddy fields. To evaluate the possibility of non-destructively diagnosing waterlogging stress using chlorophyll fluorescence (CF) imaging techniques, we screened 57 ginseng accessions for waterlogging tolerance. To evaluate waterlogging tolerance among the 2-year-old Korean ginseng accessions, we treated ginseng plants with water stress for 25 days. The physiological disorder rate was characterized through visual assessment (an assigned score of 0-5). The physiological disorder rates of Geumjin, Geumsun and GS00-58 were lower than that of other accessions. In contrast, lines GS97-62, GS97-69 and GS98-1-5 were deemed susceptible. Root traits, chlorophyll content and the reduction rates decreased in most ginseng accessions. Further, these metrics were significantly lower in susceptible genotypes compared to resistant ones. All CF parameters showed a positive or negative response to waterlogging stress, and this response continuously increased over the treatment time among the genotypes. The CF parameter Fv/Fm was used to screen the 57 accessions, and the results showed clear differences in Fv/Fm between the susceptible and resistant genotypes. Susceptible genotypes had an especially low Fv/Fm value of less than 0.8, reflecting damage to the reaction center of photosystem II. It is concluded that Fv/Fm can be used as a CF parameter index for screening waterlogging stress tolerance in ginseng genotypes.