DOI QR코드

DOI QR Code

Evaluation of Water Stress Using Canopy Temperature and Crop Water Stress Index (CWSI) in Peach Trees

복숭아나무의 엽온 및 작물수분스트레스 지수를 이용한 수분스트레스 평가

  • Yun, Seok Kyu (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Kim, Sung Jong (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Nam, Eun Young (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Kwon, Jung Hyun (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Do, Yun Soo (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Song, Seung-Yeob (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science) ;
  • Kim, Minyoung (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Choi, Yonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences) ;
  • Kim, Ghiseok (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Shin, Hyunsuk (Department of Horticulture, Gyeongnam National University of Science and Technology)
  • 윤석규 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 김성종 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 남은영 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 권정현 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 도윤수 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 송승엽 (농촌진흥청 국립원예특작과학원 과수학과) ;
  • 김민영 (농촌진흥청 국립농업과학원 재해예방공학과) ;
  • 최용훈 (농촌진흥청 국립농업과학원 재해예방공학과) ;
  • 김기석 (서울대학교 바이오시스템.소재학부) ;
  • 신현석 (경남과학기술대학교 원예학과)
  • Received : 2019.10.22
  • Accepted : 2019.12.11
  • Published : 2020.01.31

Abstract

The study was performed to calculate canopy temperatures and crop water stress index (CWSI) of 2-year-old 'Yumi' peach trees using thermal infrared imaging under different soil water conditions, and to evaluate availability for water stress determination. Canopy temperatures showed similar daily variations to air temperatures and they were higher during the daytime than air temperatures. Canopy temperatures for 24 h were correlated highly to air temperatures (r2 =0.95), solar radiations (r2 =0.74), and relative humidity (r2 =-0.88). In addition, soil water potential showed a highly negative correlation to canopy temperatures (r2 =-0.57), temperature differences between leaf and air (TD) (r2 =-0.71), and CWSI (r2 =-0.72) during the daytime (11 to 16 h). CWSI for 24 h was highly related to canopy temperatures (r2 =0.90) and TD (r2 =0.92), whereas CWSI was not correlated to soil water potential (r2 =-0.27) for 24 h but related highly to water potential (r2 =-0.72) during the daytime (11 to 16 h). Correlation coefficients between CWSI (y) and soil water potential (x) were highest from 11 to 12 h and a regression equation was deduced as y = -0.0087x + 0.14. CWSI was calculated as 0.575 at -50 kPa, which soil water stress generally occurs. Thus our result suggests that this regression equation using thermal infrared imaging is useful to evaluate soil water stress of peach trees.

본 연구는 적외선 열 영상 장치를 이용하여 2년생 '유미' 복숭아나무의 토양수분 수준에 따른 엽온 및 CWSI를 분석하여 수분스트레스 측정 가능성을 검토하였다. 엽온은 대기온도와 유사한 일변화를 보이며 낮 시간대에는 대기온도보다 높은 양상을 보였다. 엽온은 전일(24시간) 기준으로 대기온도(r2 =0.95), 일사량(r2 =0.74), 상대습도(r2 =-0.88)와 모두 높은 상관계수를 나타났다. 또한 토양수분장력은 낮 시간대(11~16시)에 엽온(r2 =-0.57), 엽-대기온도차(r2 =-0.71), CWSI(r2 =-0.72)와 높은 부의상관을 나타냈다. CWSI와 엽온, 엽-대기온도차의 상관계수는 24시간 기준으로 매우 높았고(r2 =0.90, r2 =0.92), CWSI와 토양수분장력의 상관분석에서 24시간 기준으로는 상관관계가 낮았으나(r2 =-0.27), 낮 시간대(11~16시)에는 상관관계가 매우 높았다(r2 =-0.72). CWSI (y)와 토양수분장력(x)의 상관관계 결정계수(r2 )는 11~12시간대에 가장 높았으며(r2 =0.68), 이때 회귀식은 y = -0.0087x + 0.14로 조사되었다. 일반적인 토양수분스트레스 시점인 -50 kPa에 해당되는 CWSI는 0.575로 계산된다. 따라서 적외선 열 영상 장치를 이용한 엽온 및 CWSI는 토양수분장력에 대해 높은 상관계수를 나타낸 것으로 보아 복숭아나무의 수분스트레스 진단에 유용하게 활용할 수 있을 것으로 예상된다.

Keywords

References

  1. Bellvert, J., J. Marsal, J. Girona, and P.J. Zarco-Tejada. 2015. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig. Sci. 33:81-93. https://doi.org/10.1007/s00271-014-0456-y
  2. Colak, Y.B. and A. Yazar. 2017. Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean region. Sci. Hortic. 224:384-394. https://doi.org/10.1016/j.scienta.2017.06.032
  3. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29:185-212. https://doi.org/10.1051/agro:2008021
  4. Fuentes, S., R. De Bei, J. Pech, and S. Tyermen. 2012. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 30:523-536. https://doi.org/10.1007/s00271-012-0375-8
  5. Jackson, R.D., S.B. Idso, R.J. Reginato, and P.J. Pinter Jr. 1981. Canopy temperature as a crop water stress indicator. Water Resources Res. 17:1133-1138. https://doi.org/10.1029/WR017i004p01133
  6. Jones, H.G. 2004. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv. Bot. Res. 41:107-163. https://doi.org/10.1016/S0065-2296(04)41003-9
  7. O'Shaughnessy, S., S.R. Evett, P.D. Colaizzi, and T.A. Howell. 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agric. Water Manag. 107:122-132. https://doi.org/10.1016/j.agwat.2012.01.018
  8. Park, S., D. Ryu, S. Fuentes, H. Chung, E. Hernandez-Montes, and M. O'Connell. 2017. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sens. 9:828-842. https://doi.org/10.3390/rs9080828
  9. Wang, D. and J. Gartung. 2010. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agric. Water Manag. 97:1787-1794. https://doi.org/10.1016/j.agwat.2010.06.014
  10. Wery, J., S.N. Silim, E.J. Knights, R.S. Malhotra, and R. Cousin. 1994. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73-83. https://doi.org/10.1007/BF00027184
  11. Wheaton, A.D., N.C. Cooley, and G.M. Dunn. 2011. Use of thermal imagery to detect water stress during berry ripening in Vitis vinifera L. Cabernet Sauvigno. Acta Hortic. 889:123-130. https://doi.org/10.17660/actahortic.2011.889.12