Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity

폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향

  • Shin, Joung-Du (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Jong-Sik (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Kim, Won-Il (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Chang-Eun (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Yun, Sun-Gang (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Eom, Ki-Cheol (Division of Agricultural Environment, National Institute of Agricultural Science and Technology, Rural Development Administration)
  • 신중두 (농업과학기술원 농업환경부) ;
  • 이종식 (농업과학기술원 농업환경부) ;
  • 김원일 (농업과학기술원 농업환경부) ;
  • 이창은 (농업과학기술원 농업환경부) ;
  • 윤순강 (농업과학기술원 농업환경부) ;
  • 엄기철 (농업과학기술원 농업환경부)
  • Received : 2003.01.20
  • Accepted : 2003.02.18
  • Published : 2003.02.28

Abstract

Objective of this study was to assess rice growth and percolation water salinity under the irrigation of the discharge waters from the municipal wastewater treatment plant and from the industrial wastewater treatment plant as alternative water resources during transplanting season. Three kinds of waters were irrigated; the discharge water from an industrial wastewater treatment plant (DIWT), the discharge water from the municipal wastewater treatment plant (DMWT), and groundwater. Concentrations of $COD_{er}$, $NH_4{^+}_-N$, $Mn^{2+}$, and $Ni^+$ in DIWT, SS content and $PO_4-P$ concentrations in DMWT were higher than those of reuse water criteria of other country for agricultural irrigation. The plant height in the irrigation of DMWT was shorter by 2 cm than the groundwater irrigation except for 10 days irrigation. However, the number of tillerings was not significantly different between DMWT and the groundwater. For the harvest index, there were no significant difference between DMWT and DIWT for 20 days irrigation, but slightly higher in DIWT than that of DMWT for 30 days irrigation regardless of soil types. The salinity of percolation water in the rhizosphere with irrigation of DIWT had more twofold than DMWT, but SAR value from DMWT had no significantly different from the groundwater irrigation. The average $EC_i$ values in the rooting zone irrigated with DIWT and DMWT for 30 days after rice transplanting were 4.7 and $3.4dS\;m^{-1}$ in clay loam soil, and were 3.5 and $2.5dS\;m^{-1}$ in sandy loam soil, respectively. There was dramatic decrease in $EC_i$ value at 30 days after rice transplanting even though $EC_i$ of DIWT had more twofold than DMWT. However, $EC_i$ from DMWT had no significant difference from the groundwater. Therefore, it might be considered that there was limited possibility to irrigate DMWT to overcome drought injury of rice transplanting season in paddy field.

벼 재배에 있어 이앙기 가뭄시 대체 용수원을 개발하고자 공장폐수처리장(이하 공장폐수 처리수)와 하수종말처리장 방류수(이하 하수처리수)를 관개한 다음 지하 침투수 수질 및 벼생육 변화를 구명하기 위해 본 시험을 수행하였다. 대체 관개 용수원으로서 공장폐수 처리수의 COD, $NH_4{^+}-N$, $Mn^{2+}$, 및 $Ni^+$ 농도와 하수처리수중의 SS및 $PO_4-P$농도는 여러 국가들의 관개 재활용 수질 기준보다 높은 것으로 나타났다. 하수처리수의 초장은 공장폐수 처리수 10일간 관개구를 제외하고 지하수 관개구 보다 약 2 cm 정도 짧았으나, 지하수 및 하수처리수 관개구의 경수는 관개기간에 관개 없이 유의차가 없는 것으로 나타났다. 그리고 하수처리수 및 공장폐수 처리수 20일 관개구의 수확지수는 유의차가 없었지만, 공장폐수 처리수 30일 관개구의 수확지수는 토성에 관계없이 하수처리수 관개구 보다 약간 높은 것으로 나타났다. 공장폐수 처리수 관개구의 토양 침출수중의 SAR값은 하수처리수 관개구보다 2배 이상 높았지만, 하수처리수 관개구는 지하수 관개구와 비교하여 유의차가 없는 것으로 나타났다. 이앙 30일 후 공장폐수 및 하수종말처리수 관개구의 토양침출수중 평균 전기전도도(EC1) 값은 각각 식양토에서 4.7과 $3.4dS\;m^{-1}$ 그리고 사양토에서 3.5 및 $2.5dS\;m^{-1}$로 나타났다. 전생육 기간 및 토성에 따른 공장폐수 처리수 관개구의 토양 침출수중 $EC_i$값이 하수처리수 관개구 보다 2배 이상 높게 나타났지만, 이앙 30일 후부터 급격히 감소하는 경향을 보였다. 그렇지만 하수종말 처리수 관개구의 토양 침출수 중 $EC_i$ 값은 지하수 관개구와 비교하여 유의차가 없는 것으로 나타났다. 이상의 결과로 보아 벼 재배시 하수종말 처리수는 가뭄으로 인한 농업용수가 부족한 경우 대체수자원으로서 잠정적 활용이 가능한 것으로 생각된다.

Keywords

References

  1. Angelakis, A.N., Marecos, Do Monte, M. H. R, L. Bontoux, and T. Asano. 1999. The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Res.33:2201-2217 https://doi.org/10.1016/S0043-1354(98)00465-5
  2. Rhoades, J.D., A. Kandiah, and A.M Mashali. 1992. The use of saline waters for crop production. FAO Irrigation and Drainage PaperNo. 48, Rome, pp. 133
  3. Singh, U., S.K Patil, R.O. Das, J.L. Padilla, V.P. Sineh, and A.R. Pal. 1999. Nitrogen dynamics and crop growth on an alfisol and a vertisol under rainfed lowland rice-based Fig. 5. Changes of $EC_{1}$ in soil water at lOcm depth at 90 days after transplanting to alternative irrigation waters and irrigation periods at clay loam and sandy loam soils. DAT, days after rice transplanting; DIWT, discharge water from industrial wastewater treatment plant; DMWT, discharge water from municipal wastewater treatment plant:I, represent the standard deviation of each variable.cropping system. Field Crop. Res. 61: 237-252돀𼚖⨀塨?⨀ https://doi.org/10.1016/S0378-4290(98)00166-X
  4. United State Environmental Protection Agency. 1992 Guidelines for water reuse: Manual. U.S. EPA and U.S Agency for Int. development. EPA/625/R-92/004 Cincinnati, OH
  5. Environmental Management Corporation. 2001. Study on reuse technology of discharge water from municipal wastewater treatment plant, pp.11
  6. Korea Environmental Protection Agency. 2000. Standard methods for the examination of water contamination, pp 141-347
  7. Papadopoulos, I. 1995. Present and perspective use of wastewater for irrigation in the Mediterranean basin, In $2^{nd}$ Int. Symposium on wastewater reclamation and reuse, eds. A. N. Angelakis et al., October, Vol. 2, pp. 735-746. IAWQ, Iraklio, Greece
  8. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils(Ed). USDA Agricultural Handbook No. 6, Washington, pp 160