• Title/Summary/Keyword: drops

Search Result 1,126, Processing Time 0.027 seconds

Identification of Two-Phase Flow Patterns in a Inclined Duct Based upon a Statistical Analysis of Instantaneous Pressure Drop (순간압력강하치의 통계적 해석을 통한 경사관내 2상유동양식의 판별)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.590-597
    • /
    • 1988
  • Characteristics of flow regime transitions in inclined upwards gas-liquid two-phase flow have been investigated based upon a statistical analysis of instantaneous pressure drop curves through an orifice. The probability density functions of the curves indicate distinct patterns depending upon two-phase flow regime, which are very similar to those of horizontal two-phase. The dimensionless intensity of fluctuations of the pressure drops sharply change as the flow transitions such as plug-slug, pseudo slug-slug and annular-slug take place. The effects of inclination angle on the flow regime transitions have been also investigated. The results show that the method to identify the flow pattern based upon the statistical analysis of instantaneous pressure drops is suitable for inclined flow as well as horizontal flow.

  • PDF

Two Cases of Prolonged Mutation Difficulty Treated by Pressure Method (압박법으로 교정한 변성기장애지속증)

  • 문영일
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1983.05a
    • /
    • pp.11.1-11
    • /
    • 1983
  • Mutation consisted of abrupt and uncontrolled rises and falls in vocal pitch due to poor coordination of the laryngeal musculature associated with general bodily growth. The male voice drops about 10 semitones after mutation period but the female voice drops about 2 semitones. Symptoms of abnormal voice mutation are many variations in the voice. Sometimes the voice is a true falsetto, high and thin. The au thor experienced two male cases of prolonged mutation difficulty treated by pressure method. The result were excellent with simple maneuver. The author reported the result of treatment for two cases and reviewed the literatures.

  • PDF

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

The Drought based on the Assessment of Soil Moisture in Korea (토양수분량의 평가에 의한 한국의 가뭄)

  • 전경은
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • The assessment for a degree of drought has been carried out based on the soil moisture index in Korea. The soil moisture index(Im) was calculated assuming of constant evapotranspiration until wilting point as Im = w2/wf $.$100. The soil moisture content(W2) at the final of a period is obtained from W2 : Pe + Wl - E, here the effective precipitation amount is Pe, evapotranspiration E, and the soil moisture content at the beginning of a period is Wl. The filed capacity(Wf), as a mean value of fine sandy loams, was reduced to 92 mm/ft when we accept the wilting point and the available soil moisture content of 42 mm/ft, respectively. The drought begins in Korea when the soil moisture index drops to less than 50%. The value coincides the isoline of 11 or more consecutive days without measureable precipitation. The soil moisture index frequently drops in the northern part of Youngnam area and Honam area so that both areas are well known as the areas of drought. Key word : Droughts, Soil Moisture Index.

  • PDF

Water Flowing and Shaking Optimization

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.173-180
    • /
    • 2012
  • This paper proposes a novel optimization algorithm inspired by water flowing and shaking behaviors in a vessel. Water drops in our algorithm flow to the gradient descent direction and are sometimes shaken for getting out of local optimum areas when most water drops fall in local optimum areas. These flowing and shaking operations allow our algorithm to quickly approach to the global optimum without staying in local optimum areas. We experimented our algorithm with four function optimization problems and compared its results with those of particle swarm optimization. Experimental results showed that our algorithm is superior to the particle swarm optimization algorithm in terms of the speed and success ratio of finding the global optimum.

A Basic Study for the Variation of Nodal Demands According to the Low Pressure in Water Distribution Systems (배수관망내 수압부족시 절점수요량의 변화에 대한 기초적 고찰)

  • Hyun, In-Hwan;Lee, Sang-Mok;Kim, Young-Hwan;Ahn, Yong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2002
  • Pressure drop could happen in the water distribution systems due to pipe breaks or maintenance. The pressure drop causes the water service shutdown and nodal water demands should be reduced in some areas. The conventional analysis method of water distribution systems can not consider the change of nodal water demands caused by these pressure drops. This study is to investigate the variation of nodal water demands according to the nodal water pressure and its effect on the analysis of water distribution systems. For these purpose, one real water service district was selected as a study area. As a result, nodal water demand patterns according to the water pressure could be suggested. Also, we could confirm that the suggested new analysis method for the water distribution systems which considering water pressure drops could be more reliable than the conventional method.

Development of the Bubble-Damage Polymer Detector for Neutron Dosimetry (중성자 선량측정을 위한 Bubble-Damage Polymer Detector의 개발)

  • Kang, Y.H.;Hong, U.;Kim, D.S.
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • A bubble-damage polymer detector, which operation principles are based on vaporization of superheated liquid drops by interaction with radiations, is developed for neutron dosimetry. The detectors are fabricated by dispersing the superheated liquid drops of Freon12 into transparent and elastic polymer made of acylamide and glycerine. The bubbles formed by neutron irradiation are immediately visible. The neutron sensitivity of the detectors is 4-7 bubbles/10$\mu$ Sv for Am-Be neutrons.

  • PDF

The Reactive Power Compensation for a Feeder by Control of the Power Factor of PWM Converter Trains (PWM 컨버터 차량의 역률 제어를 통한 급전선로의 무효전력 보상)

  • Kim, Ronny Yongho;Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • PWM converter trains exhibit excellent load characteristics in comparison with conventional phase-controlled trains with low power factors, as they can be operated at power factors which are close to unity by means of a voltage vector control method. However, in the case of a high track density or extended feeding, significant line losses and voltage drops can occur. Instead of operating these trains at a fixed unity power factor, this paper suggests a continuous optimal power factor control scheme for each train in an effort to minimize line losses and improve voltage drops according to varying load conditions. The proposed method utilizes the steepest descent algorithm targeting each car in the same feeding section to establish the optimized reactive power compensation levels that can minimize the reactive power loss of the feeder. The results from a simulation of a sample system show that voltage drops can be improved and line losses decreased.

Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model (Takahashi 구름모형에서의 얼음입자 충돌효율 개선)

  • Lee, Hannah;Yum, Seong Soo
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.