• Title/Summary/Keyword: droop control

Search Result 132, Processing Time 0.022 seconds

An Equivalent Load Sharing by Wireless Parallel Operation Control in UPS

  • Byun, Young-Bok;Koo, Tae-Geun;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • An equivalent load sharing control based on the frequency and voltage droop concept for parallel operation of two three-phase Uninterruptible Power Supply (UPS) systems with no control interconnection lines is presented in this paper. First of all, due to the use of active power and reactive power as control variables, the characteristics of output powers according to amplitude and phase differences between output voltages of two UPS systems are analyzed. Secondly, simulation results under different line impedance demonstrate the feasibility of the wireless parallel operation control. Finally, experiments are presented to verify the theoretical discussion with two three-phase 20kVA UPS systems employed TMS320C32, a kind of real time digital signal processor (DSP).

  • PDF

Sensitivity Analysis with Optimal Input Design and Model Predictive Control for Microalgal Bioreactor Systems (미세조류 생물반응기 시스템의 민감도분석을 위한 최적입력설계 및 모델예측제어)

  • Yoo, Sung Jin;Oh, Se-Kyu;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Microalgae have been suggested as a promising feedstock for producing biofuel because of their potential of lipid production. In this study, a first principles ODE model for microalgae growth and neutral lipid synthesis proposed by Surisetty et al. (2010) is investigated for the purpose of maximizing the rate of microalgae growth and the amount of neutral lipid. The model has 6 states and 12 parameters and follows the assumption of Droop model which explains the growth as a two-step phenomenon; the uptake of nutrients is first occurred in the cell, and then use of intra-cellular nutrient to support cells growth. In this study, optimal input design using D-optimality criterion is performed to compute the system input profile and sensitivity analysis is also performed to determine which parameters have a negligible effect on the model predictions. Furthermore, model predictive control based on successive linearization is implemented to maximize the amount of neutral lipid contents.

An Islanding Microgrid Power Sharing Approach Using Adaptive Virtual Impedance control scheme

  • Hoang, Van-Tuan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.315-316
    • /
    • 2016
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approachin order to address the inaccurate reactive power sharing problems. The proposed method can adaptively regulate the DG unit thanks to the equivalent impedance, andthe effect of the mismatch in feeder impedance is compensatedto share the reactive power accurately.The proposed control strategy can be implemented directly without any requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Analysis of Parallel Characteristics for Virtual Implement of 50[W]Solar Cell modules (태양전지 가상구현 시스템[50W]의 병렬연결 출력특성에 대한 분석)

  • Lee, B.I.;Jung, B.H.;Jeon, Y.S.;Choe, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.362-364
    • /
    • 2003
  • Generally, photovoltaic system is composed a number of solar cells array. so, virtual implementation module for solar cell array is needed Parallel connection each module for extract the power. A desirable characteristic of a parallel supply system is that individual converters share the load current equally and stably. The current sharing(CS) can be implemented using two approaches. The first one, known as a droop method, relies on the high output impedance of each converter. and The second approach, known as active current-sharing techniques. In this paper, analyze for better control logic of parallel connecting virtual implements of solar cell at using droop method.

  • PDF

The Parallel Operation of Each other three phase AC/DC Converter using DC Current Droop Control for Multi-parallel DC Distribution System (다병렬 직류배전 시스템의 DC전류 드룹 제어를 이용한 서로 다른 3상 AC/DC컨버터의 병렬운전기법)

  • Lee, Hee-Jun;Hong, Jin-Seok;Hyun, Seung-Wook;Kang, Jin-Wook;Kim, Han-Soo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • DC distribution system is difficult to compose the single-system because of the capacity restriction of power semiconductors. Therefore, DC Distribution system needs parallel operation of AC/DC converters for increase to system capacity. However, this system generates the circulating current. This paper is reducing the circulating current and safely sharing the load using the proposed DC current droop control method when each other 3-phase AC/DC converter connected. This system confirms through the simulation and experiment. Also, when each other converter of parallel operate. it is compared the response characteristics

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

The Application and Verification of the 2MVA Battery Energy Storage System(BESS) with Wind-turbine in Micro-grid of Gapado, Jeju (가파도 마이크로그리드에서의 풍력발전 연계를 위한 2MVA급 배터리 에너지 저장시스템(BESS) 적용 및 실증)

  • Kim, Seung-Mo;Oh, Seung-Jin;Lee, Jong-Hak;Kim, Tae-Hyeong;Kwon, Byung-Ki;Ahn, Jae-Min;Jin, Kyung-Min;Choi, Chang-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.303-311
    • /
    • 2014
  • This paper shows the test result of 2MVA BESS(Battery Energy Storage System) with wind-turbine in micro-grid of the Gapado. To implement of micro-grid with BESS, characteristics of generator and customer load in grid are considered. Also, to operate of 2-parallel PCU(Power Conversion Unit) in BESS, the droop control is adopted with operating mode of grid independent. Performances of BESS with wind-turbine were verified by analysis of power quality such as voltage harmonics, ratio of voltage and frequency regulation, and by measurement of waveform such as output voltage and current.

A Study on the Droop Method with Improved Current Distribution Characteristics (전류 분배 특성이 향상된 드룹 방법에 관한 연구)

  • Jang, Paul
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.785-792
    • /
    • 2019
  • In parallel operation of multiple power converter modules, equal power distribution among modules shall be made to improve the reliability of the system. In this paper, a novel droop method is proposed to present improved current distribution characteristics. In the proposed method, if the current in each module become greater than the current set-point value, the output voltage set-point is raised to improve the current distribution characteristics. Meanwhile, when the output voltage is to be managed within the tolerance range, the range of the usable control IC reference value ($v_{ref}$) will be reduced if the output voltage setting is always raised. Thus, in case the output voltage set-point among modules is reversed, the downward adjustment is introduced. The proposed method was experimentally validated with a 17.5V/500mA prototype of two boost converters operating in parallel.

Instantaneous Current Control for Parallel Inverter with a Current Share Bus (전류공유버스를 이용한 병렬 인버터 순시 제어기 설계)

  • 이창석;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Feasibility Study for Application of Frequency Regulation ESS in Cuba: Technological Effects on Improving Frequency Compensation (쿠바 주파수조정 ESS 운영 전략 검토: 주파수 보상 효과 분석)

  • Kim, Soo-Yeol;Lee, Seong-eun;Kim, Jin-tae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • KEPCO has installed Frequency Regulation ESS (FR ESS) of 376 MW since 2015. Frequency Regulation is ancillary service to support stabilizing system frequency, which is divided into governor free and automatic generation control. KEPCO operates FR ESS as governor free application and leads FR ESS market with capability of diverse demonstration and operation experiences. To expand FR ESS role during transient states of power system, KEPCO has extended operating time of charging and discharging. KEPCO has also changed speed droop lower than before to improve contribution on frequency compensation, and acquired much experiences of differentiating bad cells from others. Based on these technologies and know-hows, KEPCO Research Institutes received request of feasibility study and technical cooperation for overseas FR ESS business. This paper suggests the simple and practical method for making technological feasibility study of FR ESS.