• Title/Summary/Keyword: drone control

Search Result 294, Processing Time 0.038 seconds

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Crop Water Stress Index (CWSI) Mapping for Evaluation of Abnormal Growth of Spring Chinese Cabbage Using Drone-based Thermal Infrared Image (봄배추 생육이상 평가를 위한 드론 열적외 영상 기반 작물 수분 스트레스 지수(CWSI) 분포도 작성)

  • Na, Sang-il;Ahn, Ho-yong;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.667-677
    • /
    • 2020
  • Crop water stress can be detected based on soil moisture content, crop physiological characteristics and remote-sensing technology. The detection of crop water stress is an important issue for the accurate assessment of yield decline. The crop water stress index (CWSI) has been introduced based on the difference between leaf and air temperature. In this paper, drone-based thermal infrared image was used to map of crop water stress in water control plot (WCP) and water deficit plot (WDP) over spring chinese cabbage fields. The spatial distribution map of CWSI was in strong agreement with the abnormal growth response factors (plant height, plant diameter, and measured value by chlorophyll meter). From these results, CWSI can be used as a good method for evaluation of crop abnormal growth monitoring.

Analysis of Hydraulic Characteristics in River Using 3D Geospatial Information (3차원 지형공간정보를 이용한 하천수리특성 분석)

  • Kim, Si-Chul;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.33-33
    • /
    • 2021
  • 예측하기 어려운 복잡한 기후 변화로 인해 수자원 관리측면에서 다양한 방법을 도입하여 해결할 수 있는 방안이 국가적 주요 관심사로 다루어지고 있다. 따라서 투입인력과 소요시간 절감, 장비와 인력진입 불가지역에 대한 정보획득, 높은 공간해상도, 항공측량 대비 높은 경제성 등 다양한 장점의 드론을 이용한 하천지형 특성별 수리특성 분석방안이 필요하다. 본 연구에서는 성연천 하류부지역을 대상으로 위성항법시스템(Global Navigation Satellite System, GNSS) 측량 지형성과와 드론측량(Drone) 지형성과를 지상에 설치된 CHP(Check Point) 좌표 값을 확인하여 두 지형의 정확도를 비교하였으며 HEC-RAS 모형을 이용하여 빈도별 수리특성을 비교 산정하였다. 본 연구는 성연천 하류 480m구간을 선정하고 GNSS를 이용한 실측지형자료와 GCP(Ground Control Point)를 얻기 위해 정확도 검증을 실시하였으며 위성항법시스템(GNSS) 측량과 DRONE RGB측량의 CHP(Check Point) 오차를 비교하여 정확도를 검증하였다. 오차 값이 확인된 위성항법시스템(GNSS)을 이용하여 가상기준점을 선정하고 RTK 모바일스테이션을 설치하여 DRONE LIDAR측량을 통해 지형자료를 취득하였으며 얻어진 지형자료를 HEC-RAS를 통해 입력 후 성연천 하천기본계획에 제시되어진 조도계수와 빈도별 홍수위를 적용하여 연구구간 480m에 대해 100년 빈도의 결과 값을 비교 검토하였다. 100년 빈도 계획 홍수량 조건의 하상과 한계수위의 차에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균수위 측정오차는 드론 RGB 측량 지형자료 0.460m, 드론 LIDAR 측량 지형자료 0.260m의 결과를 얻었으며 동일 조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균유속 측정오차는 드론 RGB 측량 지형자료 0.40m/s, 드론 LIDAR 측량 지형자료 0.36m/s의 결과를 얻었다. 통수 단면적의 비교 결과는 위성항법시스템(GNSS) 측량 지형자료를 기준으로 드론 RGB 측량 지형자료 전체 단면의 평균오차는 20.20m2, 드론 LIDAR 측량 지형자료 전체 단면의 평균오차는 21.682의 결과를 얻었으며 이상에서와 같이 홍수위와 평균유속, 통수 단면적의 측정오차 비교 결과를 종합할 때 통수 단면적 측정결과는 위성항법시스템(GNSS) 측량과 드론 RGB 측량의 차이가 적었으나 계획 홍수량 조건의 하상과 한계수위 차이와 동일조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량과 드론 LIDAR 측량의 차이가 적은 것으로 나타났다. 그리고 통수용량(capacity)(m3) 비교에서는 위성항법시스템(GNSS) 측량을 기준으로 드론 RGB 측량은 약 7644m3, 드론 LIDAR 측량은 약 7547m3의 차이를 보여 드론 LIDAR를 이용한 결과가 가장 정확한 측정방법으로 추천할 수 있음을 확인하였다.

  • PDF

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

The modified Ziegler-Nichols method for obtaining the optimum PID gain coefficients under quadcopter flight system (쿼드콥터 비행 시스템에서 최적의 PID 이득 계수를 얻기 위한 수정된 지글러-니콜스 방법)

  • Lee, Sangrok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.195-201
    • /
    • 2020
  • This paper implemented quadcopter-type drone system and proposed the heuristic method for obtaining the optimum gain coefficients in order to minimize the settling time. Control system for quadcopter posture stabilization reads the posture data from accelerator and gyro sensor, revises the original posture data using Mahony filter, and drives 4 DC motors using PID controller. The first step of the proposed method is to obtain the gain coefficients using the Ziegler-Nichols method, and then determine the optimum gain coefficients using the heuristic method at the next 3 steps. The experimental result shows that the maximum overshoot decreases from 44.3 to 29.8 degrees and the settling time decreases from 2.6 to 1.7 seconds compared to the Ziegler-Nichols method. Therefore, we proved that the proposed method works well in quadcopter flight system with high motor noise while reducing trial and error to obtain the optimal PID gain coefficients.

Effect of Cordyceps militaris on Testosterone Production in Sprague-Dawley Rats

  • Hong, In-Pyo;Choi, Yong-Soo;Woo, Soon-Ok;Han, Sang-Mi;Kim, Hye-Kyung;Lee, Man-Young;Lee, Myung-Ryul;Humber, Richard A.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.143-146
    • /
    • 2011
  • Some of men have been suffered from the insufficient secretion of testosterone causing by physical factors, social and psychological factors. Testosterone is an essential steroid hormone controlling male reproductive function. Alternative medicines in plants, fungi, and insects have been studied to enhance sexuality. $Cordyceps$ species including $Cordyceps$ $sinensis$ (CS) and $C.$ $militaris$(CM) has been used as for the enhancement of sexual functionfor hundreds of years in Far East Asian. In the present study, we determined the effect of fruiting bodies of $C.$ $militaris$ which cultured on bee drone medium (CMD) and brown rice medium (CMB) on testosterone concentration in Sprague-Dawley rats. Eighteen rats per group were housed to regular diet or diet supplemented with CMB and CDD, respectively for 4 weeks. Serum was collected from 6 rats per group. Results showed that changes of the body weight, food and water intake of the rats were not observed in this study. However, both CMB and CDD increased the serum testosterone concentration in rats. Furthermore, CMD significantly stimulated testosterone production (p <0.05) compared to the control. Hence, it suggests that $C.$ $militaris$ fruiting bodymight be developed as a complementary medicine to improve sexual hormones.

A Case Study of Recent New Terrorism and Potential Patterns in South Korea (최근 국외 뉴테러리즘의 사례분석과 국내 발생가능 유형에 대한 연구)

  • Jeon, Yong-Jae;Lee, Chang-Bae;Lee, Seung-Hyun
    • Korean Security Journal
    • /
    • no.53
    • /
    • pp.11-33
    • /
    • 2017
  • Terrorism has existed in the entire human history and has become a significant topic in criminology while prior studies has focused on North Korea as the perpetrator, and this prevents an in-depth discussion of the international trends of terrorism. As soft targets are the main target of new terrorism and because we never ignore the significance of the consequences, there are needs for more studies on the topic. This study conducted a case study of major terrorism attacks and surveyed professionals in the field via an AHP analysis in order to find the characteristics of terrorism and its potential patterns in South Korea. As a result, we found that North Korea or the left-wing may utilize homemade bomb, motor vehicle or drone for the purpose of attacking multi-use facilities in South Korea. For policy implications, we insist developing a better CPTED approach on those facilities, improving professionalism of cyber-watchdog via more training and education, stricter control on drone permit, and operation of counseling centers for preventing radicalization.

  • PDF

Use of a Drone for Mapping and Time Series Image Acquisition of Tidal Zones (드론을 활용한 갯벌 지형 및 시계열 정보의 획득)

  • Oh, Jaehong;Kim, Duk-jin;Lee, Hyoseong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • The mud flat in Korea is the geographical feature generated from the sediment of rivers of Korea and China and it is the important topography for pollution purification and fishing industry. The mud flat is difficult to access such that it requires the aerial survey for the high-resolution spatial information of the area. In this study we used drones instead of the conventional aerial and remote sensing approaches which have shortcomings of costs and revisit times. We carried out GPS-based control point survey, temporal image acquisition using drones, bundle adjustment, stereo image processing for DSM and ortho photo generation, followed by co-registration between the spatio-temporal information.

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.