DOI QR코드

DOI QR Code

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model

시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종

  • Park, SeungWoo (Dept of Smart Drone Convergence Graduate School, Korea Aerospace University) ;
  • Han, SeungWoo (Dept of Smart Drone Convergence Graduate School, Korea Aerospace University) ;
  • Kim, Linkeun (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Ko, Sangho (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 박승우 (한국항공대학교, 스마트드론융합학과) ;
  • 한승우 (한국항공대학교, 스마트드론융합학과) ;
  • 김인근 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 고상호 (한국항공대학교, 항공우주 및 기계공학부)
  • Received : 2021.06.02
  • Accepted : 2021.07.19
  • Published : 2021.10.31

Abstract

Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

앨버트로스는 동적 활공 기법을 이용하여 수평풍으로부터 에너지를 얻어 날갯짓 없이 장거리를 비행할 수 있다. 이러한 동적 활공 기법을 유/무인기에 적용하여 비행체에 요구되는 자원을 최소화하고 경량화, 소량화를 달성하여 주어진 임무를 효과적으로 수행할 수 있다. 본 논문에서는 앨버트로스의 동적 활공 기법을 모사하기 위하여 최적의 동적 활공 비행 궤적을 도출하고 이를 추종하기 위한 제어 구조를 설계하여 시뮬레이션을 진행한다. 특히나 동적 활공 시뮬레이션을 더욱더 현실과 근접하게 모델링하기 위해 매 순간 변화하는 수평풍 모델을 제안한다. 이를 통해 시변 수평풍 모델이 무인 비행체의 동적 활공 임무를 수행하는데 미치는 영향을 파악하고 분석한다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2018R1D1A1B07049675)

References

  1. Mir, I., Eisa, S.A. and Maqsood, A., "Review of dynamic soaring : technical aspect, nonlinear modeling perspectives and future directions", Nonlinear Dynamics, Vol. 94, August. 2018, pp. 3117~3144. https://doi.org/10.1007/s11071-018-4540-3
  2. Sahcs, G. P. and Gruter, B., "Dynamic Soaring - Kinetic Energy and Inertial Speed", AIAA Atmospheric Flight Mechanics Conference, January. 2017, pp.9~13.
  3. Zhao, Y.J., "Optimal patterns of glider dynamic soaring", Optimal Control Application and Methods, Vol. 25, May. 2004, pp. 67~89 https://doi.org/10.1002/oca.739
  4. Richardson, P.L., "Upwind dynamic soaring of albatrosses and UAVs", Progress in Oceanography, Vol. 130, 2015, pp.146~156. https://doi.org/10.1016/j.pocean.2014.11.002
  5. Sachs, G. and Bussotti, P., "Application of optimal control theory to dynamic soaring of seabirds", Variational analysis and applications, MA, 2005, pp.975~994.
  6. Sachs, G., Knoll, A. and Lesch, K., "Optimal utilization of wind energy for dynamic soaring", Technical Soaring, Vol. 25, 1991, pp.48~55.
  7. Hong, H., Zheng, H., Holzapfel, F. and Tang, S., " Dynamic Soaring in Unspecified Wind Shear: A Real-Time Quadratic-Programmind Approach", 2019 27th Mediterranean Conference on Control and Automation(MED), IEEE, 2019, pp.600~605.
  8. Bentamy, Abderrahim, et al. "Evaluation of high-resolution surface wind products at global and regional scales." Journal of Operational Oceanography 2.2 (2009): 15-27. https://doi.org/10.1080/1755876x.2009.12027738
  9. Jeong, J. Y., et al. "Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of Korean Peninsula." Ocean and Polar Res 30.1 (2008): 47-58. https://doi.org/10.4217/OPR.2008.30.1.047
  10. Park, S. H., Deyst, J. and How, J. P., "Performance and lyapunov stability of a nonlinear path following guidance method", Journal of guidance, control, and dynamics, Vol. 30, 2007, pp.1718~1728. https://doi.org/10.2514/1.28957