• Title/Summary/Keyword: driving safety analyses

Search Result 35, Processing Time 0.033 seconds

A Study on the Safety Test Regulation for the Metallic Sound Barrier of the Absorption Type (금속재 흡음형 방음벽의 안전 시험 규정 분석 연구)

  • Huh, Young
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.5-15
    • /
    • 2002
  • For the noise reduction measures in a construction field where noise sources such as blasting and pile driving works exist, the construction of the sound barrier near the noise source or receiver is often the most economic measure in order to exclude the propagated sound. The dimension of the barrier is decided by the noise and construction design, and the constructive quality of a soundproof panel shall be secured in accordance with KS F4770 to guarantee the safety of sound barriers. In this paper the problems included in the KS F4770-1 that is the regulation for the metallic sound barrier of the absorption type are identified and it is suggested what to be corrected or improved. Through a series of the analyses, conclusion were reached that it is required to improve test methods in KS F4770-1 as well as to break down loads for building more cost-effective sound barrier. In addition, KS F4770-1 was compared with ZTV-Lsw 88 which is the german regulation for sound barrier design. As a result, it was found that the Korean regulation is more conservative than that of Germany.

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.

Robust Frame Design for Battery Exchange-Type Electric Motorcycle (배터리 교환형 전기 이륜차 활성화를 위한 프레임 강건 설계)

  • Kim, Sang-Hyun;Kim, Gaun;Na, Dayul;Park, Jungwoo;Yu, Dahae;Rho, Kwanghyun;Lee, Jaesang;Zu, Seoungdon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.113-118
    • /
    • 2020
  • Recently, eco-friendly electric motorcycles have been considered to replace aging gasoline motorcycles to reduce the amount of suspended fine dust in air. However, existing rechargeable battery-powered electric motorcycles have been found unacceptable by users because of their many limitations, such as long charging time, short travel distance per charge, and low driving speed. To overcome the drawbacks of conventional electric motorcycles, this paper proposes an exchangeable battery-powered electric motorcycle and a new frame shape for housing the exchangeable battery. The proposed frame is similar to that of current electric motorcycles; however, the shape and position of the saddle support, battery, and controller mount section are redesigned. The safety of the presented frame is verified through static and dynamic analyses using ABAQUS. In particular, the dynamic analysis is conducted under the most extreme condition among the various operating situations, thus confirming the robustness of the proposed frame design.

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

Tire/road Noise Characteristics of General Asphalt Pavement (일반 아스팔트포장의 타이어/노면 소음 특성)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • As road noise became an issue, low-noise pavement (LNP) has emerged. The noise difference from general asphalt pavement (GAP) is a measure to explain the noise reduction of LNP. On the other hand, even for GAP, noise varies with the performance years (PY) and pavement condition. This study evaluated the representative noise value (RNV) by the speed and PY of GAP. Sections of 49selected from the National Road Pavement Management System, and the noise was measured at speeds from 50km/h to 80km/h at every 10km/h using the Close Proximity Method (CPX). Because the noise immediately after construction differed from the other, it was treated separately, and some outliers were removed. The noise increased with increasing PY. In addition, the noise increase by speed showed a reliable trend at all noise levels. The RNV for each speed and PY was obtained through analyses of the PY and speed. The average noise difference between the initial construction and the six-year-paced pavement was approximately 6dB. When evaluating the noise reduction of LNP, it is necessary to use RNV rather than the noise of old pavement. The RNV of GAP is necessary for a relative comparison with LNP and studying the road noise characteristics for each GAP type.

Institutional Arrangement and Policy Context Underlying Sustainability Actions in the U.S.: Lessons for Asian Regions

  • Hwang, Joungyoon;Song, Minsun;Cho, Seong
    • Journal of Contemporary Eastern Asia
    • /
    • v.19 no.1
    • /
    • pp.59-83
    • /
    • 2020
  • This paper examines the actions and the factors driving those actions to reduce energy consumption and enhance energy efficiency taken by United States cities. While not much empirical evidence is available on why governments pursue practical sustainability actions, we attempt to shed more light on this important topic by empirically identifying factors that contribute to concrete actions toward sustainability policies. We adopt political market theory as a basic theoretical framework with policy-making applied to city energy consumption. Using the 2010 ICMA (local government sustainability policies and program) data, this study expands the focus of analyses to evaluate the effect of the form of government on energy consumption and energy efficiency by using multiple regression analysis. The findings show that at the city level, the mayor-council form of government are negatively associated with governments' efforts to reduce energy consumption. However, cities with at-large elections and municipal ownership are more likely to adopt sustainability actions. We also find that a large-scale economy has significant effects on the effort to reduce city energy consumption and improve energy efficiency. This shows that environmental policies are directly connected to locally relevant affairs, including housing, energy use, green transportation, and water. Thus, local level administrators could take an executive role to protect the environment, encourage the development of alternative energy, and reduce the use of fossil fuel and coal energy. These efforts can lead to important environmental ramifications and relevant actions by municipal governments.

Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement (축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산)

  • Kim, Kyoung-Min;Park, Ji-Su;Moon, Ji-Hee;Jang, Youn-Young;Park, Seung-Hyun;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

Velocity based Self-Configuring Time Division Broadcasting Protocol for Periodic Messages in Vehicle-to-Vehicle Communication (차량 간 통신에서 주기적 메시지를 위한 속도 기반의 자가 구성형 시분할 브로드캐스팅 방법)

  • Lee, Donggeun;Chang, Sang-Woo;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.169-179
    • /
    • 2014
  • For vehicle safety-related services using wireless communications, reliable collection of various driving informations transmitted periodically by neighbor vehicles is the most important. Every host vehicle analyses them to estimate a potential dangerous situation in a very short time and warns drivers to prevent an accident. However tremendous amount of periodic messages can cause the wireless communication in chaos and the services not in safe. In this paper, we propose a time-division broadcasting protocol to mitigate the communication congestion. It utilizes the received information of vehicle velocity and location, i.e. vehicle traffic density on a road to adjust the number of time slots in a given broadcasting period, and transmission power. The simulation results show that message reception ratio is changed to approximately 40% and channel access time also decreased from 10ms to 0.23ms.

Dynamic Stability of a Railroad Bridge Using Bi-prestressing Technology (바이프리스트레싱 기법을 이용한 철도교량의 동적안정성)

  • Choi, Sanghyun;Lee, Changsoo;Lim, Jaehoon;Lee, Seungjoon;Yang, Sungdon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.188-194
    • /
    • 2013
  • As the high speed railroad line increases, researches on developing a more economic high speed railroad bridge system have been actively conducted. In this paper, a new type of prestressed concrete girder based on the bi-prestressing technique, which can introduce additional prestress, is presented. The additional prestress can be introduced using a wedge-shaped pin bar into the upper part of the girder section. The applicability of the new girder technique to the high speed railroad bridge is verified via the dynamic stability analysis. Dynamic moving load analyses using the KTX train load are conducted on bridge systems with the span lengths of 30m, 35m, and 40m, respectively. The results of the analysis show that all bridge systems satisfy the limits prescribed in the design specifications to ensure structural stability, driving safety, and ride quality.