Dynamic Stability of a Railroad Bridge Using Bi-prestressing Technology

바이프리스트레싱 기법을 이용한 철도교량의 동적안정성

  • Choi, Sanghyun (Department of Railroad Facility Engineering, Korea National University of Transportation) ;
  • Lee, Changsoo (Department of Civil Engineering, University of Seoul) ;
  • Lim, Jaehoon (Railroad Convergence Technology Center, Korea National University of Transportation) ;
  • Lee, Seungjoon (Civil Engineering Technology Group, POSCO E&C) ;
  • Yang, Sungdon (Civil Engineering Technology Group, POSCO E&C)
  • Published : 2013.06.30

Abstract

As the high speed railroad line increases, researches on developing a more economic high speed railroad bridge system have been actively conducted. In this paper, a new type of prestressed concrete girder based on the bi-prestressing technique, which can introduce additional prestress, is presented. The additional prestress can be introduced using a wedge-shaped pin bar into the upper part of the girder section. The applicability of the new girder technique to the high speed railroad bridge is verified via the dynamic stability analysis. Dynamic moving load analyses using the KTX train load are conducted on bridge systems with the span lengths of 30m, 35m, and 40m, respectively. The results of the analysis show that all bridge systems satisfy the limits prescribed in the design specifications to ensure structural stability, driving safety, and ride quality.

철도의 고속화가 진행됨에 따라 보다 경제적인 고속선용 교량 시스템의 개발을 위한 연구가 활발히 진행되고 있다. 이 논문에서는 기존의 프리스트레싱기법에 새로운 방식으로 추가적인 프리스트레스를 도입할 수 있는 바이프리스트레싱기법을 이용한 신형식 거더를 소개하였다. 추가적인 인장력은 단면 상부에 설치된 강봉 사이에 쐐기형 핀바를 삽입하여 도입할 수 있다. 신형식 거더가 적용된 철도교량의 고속선 적용성은 동적해석을 통한 안정성 검토를 통하여 수행하였다. 동적안정성 검토는 30m, 35m 및 40m 경간의 교량시스템에 대한 KTX 이동하중해석을 통하여 수행하였다. 검토 결과 개발된 교량은 구조적 안정성, 주행안전성, 승차감 확보를 위하여 검토되고 있는 제한값을 모두 만족하는 것으로 나타났다.

Keywords

References

  1. Korean Railway Construction Engineering Association (KRCEA) (2011). Dynamic Stability Evaluation of IT Girder Railroad Bridge.
  2. Korea Rail Network Authority (2010) Railroad Design Manual (Track).
  3. Korea Rail Network Authority (2011) Railroad Design Specification (Road Bed).
  4. Korea Railroad Research Institute (KRRI) (2006). Research on the Applicability of the IPC Girder to the Railroad Bridge via Dynamic Behavior Analysis. Final Report.
  5. Korea Society of Disaster Information (KOSDI) (2012). Development of a New Mid-Span Bridge Superstructure System for High Speed Railroad.
  6. Kwark, J.W., Cho, J.R., Chin, W.J., Lee, J.W., Kim, B.S. (2009). "Dynamic problem and solution of the various type of bridges for high-speed railway." Proceedings of the 2009 Spring Conference, Korean Society for Noise and Vibration Engineering, pp.536-537.
  7. Kyunghee University (2010). Dynamic Stability Analysis of WPC Girder Bridge.
  8. Lee, T.-G., Oa, S.-W. (2008). "Comparison of girder height and construction cost by span in various types of railway bridge." Journal of the Korean Society for Railway, Vol.11, No.5, pp.471-476.
  9. Lim, J., Choi, S., Lee, S.J., Yang, S.D. (2012). "Dynamic stability evaluation of a new type bi-prestressing girder bridge." Proceedings of the 2012 Fall Conference, Korean Society for Railway, pp.84-87.
  10. Samhyun PF, POSCO E&C, Yooshin Corporation (2008). Development of a PSC bridge using simultaneous tensioning system for the tendon and the steel bar. Final Report, Ministry of Land, Transportation, and Maritime Affairs.