• Title/Summary/Keyword: drainage asphalt concrete pavements

Search Result 8, Processing Time 0.021 seconds

An Analysis of Flood Mitigation Effect Applying to LID in Mokgamcheon Watershed using SWMM Model (SWMM 모형을 이용한 목감천 유역의 LID 시설 적용 홍수저감효과 분석)

  • Jang, Yeongsun;Mun, Sungho;Yang, Sunglin
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: In this study, flood mitigation effect of drainage asphalt concrete pavement were analyzed by a SWMM 5.0 program in order to evaluate the low impact development (LID) based on the drainage asphalt concrete pavements. METHODS: In order to determine the porosity parameters of drainage asphalt concretes, the specimen mixtures were manufactured using the conditions presented in the previous study. The numerical simulation was conducted using the SWMM 5.0 program considering the flood mitigation effect of drainage asphalt concrete pavements. The effect of flood reduction can be observed when drainage asphalt concrete pavements were applied to Mokgamcheon watershed. The flood mitigation effect analysis of Mokgamcheon watershed as well as continuous simulation of subwatershed runoff were performed through this study. RESULTS : The analysis of drainage asphalt concrete pavements was carried out for evaluating the effect on runoff, resulting in: the peak flow decreases up to 1.26~9.53% after drainage asphalt concrete pavements applied in the SWMM 5.0 program furthermore, the discharge decreases up to 0.55~4.11%. CONCLUSIONS: As a result, the reduced peak flow and discharge were found through the SWMM 5.0 program. It can be concluded that the flood is effectively reduced when the drainage asphalt concrete pavements are used.

An Evaluation of Resistances in Porous Asphalt Concrete Mixtures due to Repeated Cyclic Freeze-Thawing (배수성 아스팔트콘크리트 혼합물의 반복 동결융해 저항성 평가)

  • Jo, Shin Haeng;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.33-39
    • /
    • 2012
  • More and more pavements are suffering from damage these days due to the below-zero winter temperatures and frequent snowfalls. From this research, the freeze-thawing mechanisms of pavements will be observed, and the freeze-thawing resistance of porous asphalt concrete mixture is to be evaluated according to various assessment methods. The investigation was conducted through applying rigid and flexible pavements to freeze-thawing resistance experiments, which include various experiments such as deformation rate measurements, Lottman tests, repeated cyclic freeze-thawing experiments, stripping resistance tests and so on. Test results revealed that the porous asphalt concrete had less deformations according to temperatures compared to dense-graded asphalt concrete due to the 20% void gap. In addition, according to the freeze-thawing repetition experiments which are effected by moisture, the porous asphalt concrete mixture showed superior resistance to repeated cyclic freeze-thawing compared to other asphalt concrete mixtures due to the drainage and the voids within the specimen.

Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis (단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안)

  • Jang, Yeongsun;Kim, Dowan;Mun, Sungho;Jang, Byungkwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

Noise reduction of Asphalt Concrete Pavement : Techniques and their performance evaluation (아스팔트 저소음 포장의 개발 및 공용성 평가)

  • Ock, Chang-Kwon;Kim, Jin-Hwan;Lee, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Porous pavements can provide road users with beneficial characteristics such as skid resistance and surface water drainage under rainy condition, and they cause less tire-road noise than conventional hot mix asphalt(HMA) pavements. However, voids of porous pavements are easily clogged by road debris at early stages, which leads to frequent maintenance works. Therefore, this study focused on the way of minimizing void clogging in porous pavements. During mixture design, the quantity of coarse aggregate has been increased to form many straight void conduits (SVCs) in porous HMAs. These SVCs were found to be effective resisting the void clogging problems. Four different porous HMAs(19mm, 13mm, 10mm, and 8mm) were developed and placed on highway roads. Their performances were validated with field tests during the past four years.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

An Evaluation of Skid Resistance Properties of Asphalt Concrete Pavement (아스팔트콘크리트 포장의 노면 미끄럼 저항성 평가)

  • Kim, Nakseok;Jeong, Haesoo
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • The skid resistant of pavement surface is an important parameter since it is directly related to the traffic safety under moving vehicular loads. In particular, it should be considered as a major factor in pavement performance evaluations to reduce the traffic accident from vehicular sliding. In this study, a portable and an automatic skid resistance tests were used to evaluate the skid resistances of the in-situ pavements. The test results showed that the skid resistance of the conventional dense graded pavement was more noticeable than the other pavement types such as the drainage pavement and the stone mastic asphalt(SMA) pavement as the service life of pavement was increased.

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

Functional Drainage Evaluation of Block Paving through the Usage of Sludge and Wheel Tracking Test (슬러지 투입 및 휠트랙킹 시험을 이용한 블록 포장의 기능적 투수평가)

  • Lee, Sang-Yum;Jung, Hoon-Hee;Mun, Sung-Ho;Park, Dae-Geun;Park, Kyong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • As the percentage of permeable ground is reduced due to the increased impermeable roads of major cities, a heat island phenomenon can be dominantly observed, resulting in increased temperature. In addition, rainfall that would have been naturally absorbed and retained by the permeable ground is overflowed due to large volumes of run-off water, resulting in more sewer failures and increased erosion. In terms of permeable pavement system, block paving has been used anywhere as well as provides many years of service. The permeable block paving is an effective alternative to the more traditional asphalt or plain concrete for minor roads; furthermore, it looks a lot better than other pavements. In this study, the functional drainage evaluation of block paving was carried out, considering the usage of experimental sludge and wheel tracking test, in order to simulate the field condition of roads.