• Title/Summary/Keyword: double-well potential

Search Result 105, Processing Time 0.031 seconds

Application of the Instantaneous Lyapunov Exponent and Chaotic Systems, Part 2: Experiment and Comparison with the Force-State Mapping Method (순간 발산지수의 카오스계에의 응용, 파트 2: 실험 및 힘-위상(Force-State Mapping) 방법과의 비교)

  • Shin, Ki-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.150-160
    • /
    • 1999
  • 본 논문은 ‘파트 1’에 그 기초를 두었으며, 실제 실험 상황에의 응용예를 들었다. 보편적인 ‘이중-우물 위치 진동기(double-well potential vibrator)'를 외부 공기압 감쇠기를 장치할 수 있도록 수정하였다. 감쇠는 높음 또는 낮음 으로 조정할 수 있도록 하였다. 이 실험계는 주기운동부터 카오스 운동까지 다양한 동적 특성을 보여준다. 힘-위상(Force-Stare Mapping) 방법이 선형상태 및 카오스상태에 응용되었으며, 특히 감쇠의 높고 낮음의 파악에 그 중점을 두었다. 그리고 , 부분발산지수들(Short term averaged Lyapunov exponents)의 합이 또한 감쇠를 파악함과 동시에 높은 감쇠에서 낮은 감쇠로의 변화를 감시할 수 있음을 보였다. 이 두가지 방법들을 비교하였으며 논하였다.

  • PDF

Molecular Dynamics in Paraelectric Phase of KH2PO4 Crystals Studied by Single Crystal NMR and MAS NMR

  • Paik, Younkee;Chang, Celesta L.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • The temperature dependences of the NMR spectrum and the spin-lattice relaxation times in $KH_2PO_4$ were investigated via single-crystal NMR and MAS NMR. The stretched-exponential relaxation that occurred because of the distribution of correlation times was indicative of the degree of the distribution of the double-well potential on the hydrogen bond. The behaviors responsible for the strong temperature dependences of the $^1H$ and $^{31}P$ spin-lattice relaxation times in the rotating frame $T_{1{\rho}}$ in $KH_2PO_4$ are likely related to the reorientational motion of the hydrogen-bond geometry and the $PO_4$ tetrahedral distortion.

Mössbauer Study of the Dynamics in BaFe12O19 Single Crystals

  • Choi, J.W.;Sur, J.C.;Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.6-8
    • /
    • 2012
  • M$\ddot{o}$ssbauer spectra of hexagonal $BaFe_{12}O_{19}$ single crystals were studied at various temperatures (4-300 K). It was found that the spin states in Fe atoms were parallel to the ${\gamma}$-ray's direction into a single crystal along the caxis. The location of the Fe ion in the 2b site is unusual in an oxide structure and has strong anisotropic lattice vibrations. Moreover, at room temperature, the zero absorption lines of the Fe ions at the 2b site were observed due to fast diffusion motion in a double well atomic potential. The two Fe ions of the single crystal mainly enter into the sites in the mirror plane of the trigonalbipyramidal structure.

Effect of Double Schottky Barrier in Gallium-Zinc-Oxide Thin Film

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.323-329
    • /
    • 2017
  • This reports the electrical behavior, bonding structure and Schottky contact of gallium-zinc-oxide (GZO) thin film annealed at $100{\sim}400^{\circ}C$. The mobility of GZO with high density of PL spectra and crystal structure was also increased because of the structural matching between GZO and Si substrate of a crystal structure. However, the GZO annealed at $200^{\circ}C$ with an amorphous structure had the highest mobility as a result of a band to band tunneling effect. The mobility of GZO treated at low annealing temperatures under $200^{\circ}C$ increased at the GZO with an amorphous structure, but that at high temperatures over $200^{\circ}C$ also increased when it was the GZO of a crystal structure. The mobility of GZO with a Schottky barrier (SB) was mostly increased because of the effect of surface currents as well as the additional internal potential difference.

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

An Experimental Analysis on the Motion Response of a Moored Semi-Submersible Platform in Regular Waves (계류된 반잠수식 시추선의 운동특성에 관한 실험적 고찰)

  • 홍사영;이판묵;홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.59-70
    • /
    • 1988
  • This paper presents the results of motion tests of a moored semi-submersible platform in regular waves. To investigate the effects of mooring system on the motion characteristics, the tests were performed under the various mooring conditions in regular head and beam waves. Two types of mooring system were employed: one is composed of soft springs and the other is of chains. In the case of chains the pretensions were varied to investigate the dynamic effects of mooring forces as well as the motion responses of the semi-submersible. The motion responses and mooring tensions were measured and analyzed by the double amplitude method. The measured motion responses were also compared with the results of calculation from three-dimensional potential theory. Finally, the dynamic behaviors of mooring chains were studied.

  • PDF

Constraints on scalar field models of dark energy.

  • Lee, Da-hee;Park, Chan-Gyung;Hwang, Jai-chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2019
  • We consider dynamical dark energy models based on a minimally coupled scalar field with three different potentials: the inverse power-law, SUGRA and double exponential potentials. For each model, we derived perturbation initial conditions in the early epoch and performed the Markov Chain Monte Carlo (MCMC) analysis to explore the parameter space that is favored by the current cosmological observations like Planck CMB anisotropy, type Ia supernovae, and baryon acoustic oscillation data. The analysis has been done by using the modified CAMB/COSMOMC code in which the dynamical evolution of the scalar field perturbations are fully considered. The MCMC constraints on the cosmological as well as potential parameters are derived. In the talk we will present a progress report.

  • PDF

Theoretical Investigation of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride: A Thermally Irreversible Photochromic System

  • 조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.308-313
    • /
    • 1998
  • A thermally irreversible photochromic system, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride (MTMA), has been studied by semi-empirical molecular orbital methods. There are one pair of stable conformations for the closed-ring form and three pairs for the open-ring form, each pair consisting of two mirror-image conformations. Interconversion between the parallel and anti-parallel conformations of the open-ring form is restricted due to high energy barriers. Only the anti-parallel conformation appears to be responsible for photochromic cyclization. Thermostability of the compound is attributed to an avoided crossing at high energy in the ground states of the isomers, whereas the photoreactivity can be explained by the mutually connected excited singlet (S1) states of the isomers, forming a double well potential with a low energy barrier. The large solvent effects can be partly explained with the low dipole moment of the anti-parallel conformation of MTMA in the S1 state. The large variation of quantum efficiency suggests that excess vibronic energy can be utilized to provide the activation energy for the photochromic reaction.

Direct displacement based design of hybrid passive resistive truss girder frames

  • Shaghaghian, Amir Hamzeh;Dehkordi, Morteza Raissi;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.691-708
    • /
    • 2018
  • An innovative Hybrid Passive Resistive configuration for Truss Girder Frames (HPR-TGFs) is introduced in the present study. The proposed system is principally consisting of Fluid Viscous Dampers (FVDs) and Buckling Restrained Braces (BRBs) as its seismic resistive components. Concurrent utilization of these devices will develop an efficient energy dissipating mechanism which is able to mitigate lateral displacements as well as the base shear, simultaneously. However, under certain circumstances which the presence of FVDs might not be essential, the proposed configuration has the potential to incorporate double BRBs in order to achieve the redundancy of alternative load bearing paths. This study is extending the modern Direct Displacement Based Design (DDBD) procedure as the design methodology for HPR-TGF systems. Based on a series of nonlinear time history analysis, it is demonstrated that the design outcomes are almost identical to the pre-assumed design criteria. This implies that the ultimate characteristics of HPR-TGFs such as lateral stiffness and inter-story drifts are well-proportioned through the proposed design procedure.

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.