DOI QR코드

DOI QR Code

Theoretical Investigation of 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride: A Thermally Irreversible Photochromic System

  • Published : 1998.03.20

Abstract

A thermally irreversible photochromic system, 2,3-bis(2,4,5-trimethyl-3-thienyl)maleic anhydride (MTMA), has been studied by semi-empirical molecular orbital methods. There are one pair of stable conformations for the closed-ring form and three pairs for the open-ring form, each pair consisting of two mirror-image conformations. Interconversion between the parallel and anti-parallel conformations of the open-ring form is restricted due to high energy barriers. Only the anti-parallel conformation appears to be responsible for photochromic cyclization. Thermostability of the compound is attributed to an avoided crossing at high energy in the ground states of the isomers, whereas the photoreactivity can be explained by the mutually connected excited singlet (S1) states of the isomers, forming a double well potential with a low energy barrier. The large solvent effects can be partly explained with the low dipole moment of the anti-parallel conformation of MTMA in the S1 state. The large variation of quantum efficiency suggests that excess vibronic energy can be utilized to provide the activation energy for the photochromic reaction.

Keywords

References

  1. Photochromism Brown, G. H.(ed.)
  2. J. Am. Chem. Soc. v.106 Moorey, W. F.
  3. IEEE Proc. v.130 Heller, H. G.
  4. J. Am. Chem. Soc. v.110 Kawamura, S.;Tsutsui, T.;Salto, S.;Murao, Y.;Kina, K.
  5. Thin Solid Films v.133 Ardo, E.;Miyazaki, J.;Morimoto, K.;Nakahara, H.;Fukada, K.
  6. Thin Solid Films v.186 Ashwell, G. J.
  7. J. Phys. Chem. v.100 Xia, W. S.;Huang, C. H.;Ye, X. Z.;Luo, C. P.;Gan L. B.;Liu, Z. F.
  8. Jpn. J. Appl. Phys. v.33 Tanio, N.;Masahiro, I.
  9. J. Polym. Sci.: Part A: Polym. Chem. v.29 Hashimoto, T.;Kohjiya, S.;Yamashita, S;Irie, M.
  10. Jpn. J. Appl. Phys. v.28 Fukuda, M.;Sawada, K.;Yoshino, K.
  11. Bull. Chem. Soc. Jpn. v.63 Kawauchi, S.;Yoshida, H.;Yamashina, N.;Ohira, M.
  12. J. Am. Chem. Soc. v.78 Herschberg, Y.
  13. J. Phys. Chem. Solids v.56 Eppler, W. R.;Kryder, M. H.
  14. Jpn. J. Appl. Phys. v.32 Tatezono, F.;Harada, T.;Shimizu, Y.;Ohara, M.;Irie, M.
  15. J. Org. Chem. v.53 Irie, M.;Mohri, M.
  16. J. Org. Chem. v.55 Nakayama, Y.;Hayashi, K.;Irie, M.
  17. Bull. Chem. Soc. Jpn. v.63 Uchida, K.;Nakayama, Y.;Irie, M.
  18. J. Phys. Chem. v.96 Irie, M.;Sayo, K.
  19. Bull. Chem. Soc. Jpn. v.64 Nakayama, Y.;Hayashi, K.;Irie, M.
  20. Appl. Phys. Lett. v.67 Kawai, T.;Koshido, T.;Yoshino, K.
  21. Jpn. J. Appl. Phys. v.33 Tanio, N.;Irie, M.
  22. Jpn. J. Appl. Phys. v.34 Koshido, T.;Kawai, T.;Yoshino, K.
  23. The Conservation of Orbital Symmetry Woodward, R. B.;Hoffman, R.
  24. J. Org. Chem. v.53 Nakamura, S.;Irie, M.
  25. J. Am. Chem. Soc. v.107 Dewar, M. J. S.;Zoebisch, E. G.;Healy, E. F.;Stewart, J. J. P.
  26. J. Computer-Aided Molecular Design v.4 Stewart, J. J. P.
  27. Hyperchem Autocube, Inc.