• 제목/요약/키워드: double frequency phenomenon

검색결과 12건 처리시간 0.041초

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory

  • Rakrak, Kaddour;Zidour, Mohamed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Chemi, Awda
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2016
  • This article is concerned with the free vibration problem for chiral double-walled carbon nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, the analytical solution is derived and two branches of transverse wave propagating are obtained. The numerical results obtained provide better representations of the vibration behaviour of double-walled carbon nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient and chirality of double-walled carbon nanotube on the frequency ratio (${\chi}^N$) of the (DWCNTs) are significant. In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance for the forced vibration analyses of double -walled carbon nanotubes.

혼돈 특성을 갖는 펄스폭 변조(CPWM)방식 (A Pulse Width Modulation(CPWM) Technique with Chaos Phenomenon)

  • 김종남;김준형;정영국;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.270-274
    • /
    • 2006
  • This paper proposes a Chaos Pulse Width Modulation(CPWM) technique. For generating the chaotic numbers by chaos phenomenon, chaos area $\lambda$=0.99 in bifurcation tree of the proposed double tent mapping is used. A micro-controller is used for the generation of chaos numbers and triangular carrier with chaotic frequency is obtained through the process of frequency modulation according to the generated chaos numbers. The experiments are executed with the 1.5kw induction motor coupled with a 2.5A load. The experimental results show that the voltage / current spectra are spread to a chaotic range, and the switching noise of motor is reduced by the proposed method compared to the fixed frequency PWM method.

  • PDF

홀로그래픽 간섭법을 이용한 진동모드의 계측에 관한 연구 (A Study on the Measurement of Vibration Mode Shape using Holographic interferometry)

  • 김광래
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.130-135
    • /
    • 2000
  • In this study the vibration behavior of the stiffened double cylinder was experimently analyzed. Due to the complex structure of the double cylinder the outside cylinder frequency responses to the exciting forces applied on various posi-tions were analyzed by using spectrum analyzer in conjunction with an accelerometer and the natural frequencies were obtained. The technique of time-averaged holographic interferometry is applied to study the vibration characteristics of outside cylinder with stiffening T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. however the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. However the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame seemed to behave as a transmitter. In addition it has been successfully demon-started that optical method such as holographic interferometry is well suited for the identification of mode shapes. They can give us a whole-field non-contact measurement instead of the point-wise measurement by accelerometer in classical modal testing.

  • PDF

전동기의 소음 저감을 위한 카오스 2중 텐트 사상 PWM기법 (Chaotic Double Tent Mapping PWM Scheme for Acoustic Noise Reduction of o Motor Drive))

  • 김준형;정영국;임영철
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.71-78
    • /
    • 2008
  • 본 연구에서는 전동기 소음 저감을 위한 카오스 2중 텐트 사상(double tent mapping) PWM 기법에 대하여 고찰하였다. 카오스 수 발생은 2중 텐트 사상의 카오스 발생 영역인 ${\lambda}=0.99$에서의 분기 트리(bifurcation tree)를 사용하였다. 카오스 수 발생은 80C196 마이크로 콘트롤러가 담당하고 있으며, 80C196으로부터 발생된 카오스 수와 MAX038 주파수 변조기를 이용하여 카오스 특성을 갖는 삼각파 캐리어가 발생한다. 2.5[A] 부하조건에 대한 1.5[kw]급 유도 전동기 구동 시스템에 제안된 방법과 종전의 고정 주파수 방법을 적용하였으며 각각의 방법에 대하여 캐리어 및 전동기 전압 그리고 3차원 스위칭 소음의 고조파 스펙트럼을 비교 검토하였다. 그 결과 제안된 방법의 고조파 스펙트럼은 특정 주파수에 집중되지 않는 카오스 분포를 하였으며, 이로 인하여 전동기에서 발생하는 날카로운 스위칭 소음이 저감됨을 알 수 있었다.

가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구 (NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL)

  • 정재환;이창열;윤현식;김효주
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

복공진 인버터를 적용한 고역률 메탈핼라이드 램프용 전자식 안정기에 관한 연구 (A Study on High Power Factor Electronic Ballast for Metal Halide Discharge Lamp Using a Double Resonant Inverter)

  • 박재욱;서철식;남승식;김해준;원재선;김동희
    • 전력전자학회논문지
    • /
    • 제10권4호
    • /
    • pp.313-322
    • /
    • 2005
  • 본 논문은 복공진 인버터를 적용한 250[W] 메탈핼라이드램프를 구동하기 위한 고역률 전자식 안정기를 설계하고 구현하였다. 제안된 전자식 안정기는 역률 개선 회로기능을 갖는 부스트 능동 PFC 회로와 하프 브리지 복공진형 인버터로 구분된 2개의 전력처리단으로 구성되어 있다. 회로 기본동작원리 및 회로 해석은 무차원화 파라미터를 도입하여 범용성을 부여하여 도식적으로 나타내었다. 음향공명을 제거하기 위해 타이머 IC와 구동 IC로 구성된 간단한 주파수 제어기를 구현하였다. 실험을 통해 복공진 인버터를 적용한 고역률 메탈핼라이드램프용 전자식 안정기가 안정적으로 동작함을 확인하였다

자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究) (A Study on Locational Control of Motion Ghost in Magnetic Imaging System)

  • 이후민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

차음성능시험에서 시편설치위치에 대한 실험적 고찰 (Investigation for effect of the specimen location on sound transmission loss measurement)

  • 김상렬;강현주;김재승;김현실;김봉기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1234-1237
    • /
    • 2002
  • When measuring sound transmission loss (STL) in a laboratory, the specimen location in test aperture affects considerably the measuring accuracy through the influence of so-called “tunneling effect” In this paper, for a single panel and a double panel with air cavity, experimental STL evaluations on various specimen locations on test aperture were carried out to explain the phenomenon. It is shown that the difference of STL is more than 2dB especially at the low frequency region and the case of the center-located panel yielded the lower STL than that of flushing with the end of tunnel, which confirms that the tunneling effect plays an important role in STL measurement.

  • PDF