• Title/Summary/Keyword: double dielectric layer

Search Result 73, Processing Time 0.026 seconds

Flexible OTFT-Backplane for Active Matrix Electrophoretic Display Panel

  • Lee, Myung-Won;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.159-161
    • /
    • 2007
  • We fabricated flexible OTFT-backplanes for the electrophoretic display(EPD). The OTFTs employed bottom contact structure on PEN substrate and used the cross-linked polyvinylphenol for gate insulator, pentacene for active layer. Especially, we used PVA/Acryl double layers for passivation of backplane as well as for pixel dielectric layer between backplane and EPD panel. The OTFT-EPD panel worked successfully anddemonstrated to display some patterns.

  • PDF

Development of Broadband Electromagnetic Wave Absorber for X-band Sensors in Double-layered Type Using Carbon

  • Choi, Chang-Mook;Kim, Dong-Il;Li, Rui;Choi, Dong-Han
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.763-766
    • /
    • 2006
  • In this paper, the EM wave absorbers were designed and fabricated for X -band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by using measurement results of S-parameter. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design The fabricated EM wave absorber consists of 1 mm first layer sheet facing metal with Carbon composition ratio 70 vol. % and 1.5 mm second layer sheet with Carbon composition ratio 60 vol. %. The measured results showed a good agreement to the simulated ones. It is found toot the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.

Development of Broad-Band Electromagnetic Wave Absorber for X-band Sensors in Double-layered Type Using Carbon

  • Choi, Chang-Mook;Kim, Dong-Il;Choi, Dong-Han;Li, Rui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.297-300
    • /
    • 2006
  • In this paper, the EM wave absorbers were designed and fabricated for X-band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by the measured S-parameter data. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design. The fabricated EM wave absorber consist of 1mm first layer sheet facing metal with Carbon composition ratio 70 vol% and 1.5 mm second layer sheet with Carbon composition ratio 60 vol%. The comparisons of simulated and measured results are good agreement. As a result, the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.

  • PDF

Study of the Reaction between the Dielectric and the Electrode during the Manufacturing of the Ceramic Capaciitor (요업콘덴사 제조에 있어서의 과전체와 전기물질간의 반응검사)

  • 김기호
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.60-66
    • /
    • 1984
  • During the metallization in the manufacturing of the ceramic capacitor at the boundary layer between Pd or Pt electrode and $BaTiO_3$-dielectric reactions were analysed. For the study of the reaction Electron Spin Resonance (ESR) Method was used. With the aid of ESR an increased of the concentration of the paramagnetic $Ti^{3+}$-Centers on the metallizing process could be seen. It meaned a reduction effect although the metallization was accomplished under oxidation atmosphere. Therefore it could be regarded as a reaction at the boundary layer. In order to investigate the reaction ad double octahedral model was compared and the increase of the $Ti^{3+}$-concentration was studied.

  • PDF

A Low-Loss Patch LTCC 60 GHz BPF Using Double Patch Resonators

  • Lee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.570-572
    • /
    • 2012
  • In this paper, a three-dimensional (3-D) low-loss and wide-band BPF based on low-temperature co-fired ceramic (LTCC) has been presented for mm-wave wireless communication applications. The proposed BPF is designed in a 6-layer LTCC substrate. The double patch resonators are fully integrated into the LTCC dielectrics and vertical via and planar CPW transitions are designed for interconnection between embedded resonators and in/output ports and MMICs, respectively. The designed BPF was fabricated in a 6-layer LTCC dielectric. The fabricated BPF shows a centre frequency (fc) of 53.23 GHz and a 3dB bandwidth of 14.01 % from 49.5 to 56.9 GHz (7.46 GHz). An insertion loss of -1.56 dB at fc and return losses below -10 dB are achieved. Its whole size is $4.7{\times}1.7{\times}0.684mm^3$.

  • PDF

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Characteristics Analysis of Total Internal Reflection-based Dielectric Multi-layer Sensor Using Plasmonics Phenomena (플라즈모닉스 현상을 이용한 전반사 기반 다층 유전체 박막 센서의 특성 분석)

  • Kim, Hong-Seung;Lee, Tae-Kyeong;Kim, Doo-Gun;Jung, You-Ra;Oh, Geum-Yoon;Lee, Byeong-Hyeon;Ki, Hyun-Chul;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.516-520
    • /
    • 2012
  • In this paper, we have theoretically analyzed and designed a dielectric multi-layer sensor with a SPR (surface plasmon resonance) using analytical calculation and FDTD (finite difference time-domain) methods. The proposed structure is composed of periodic layer and thin metal film. It has many advantages. One of that is a high sensitivity of the SPR. Another is a high Q-factor of the characteristics in the PhC (photonic crystals) micro-cavity structure. The incident light has double resonance characteristics, because the filtered light by PhC structure, dielectric multi-layer, is met the thin metal film for SPR effect. We have also observed the change of resonance characteristics according to the variation of effective index on the metal film.

Dielectric composition of the double pancake coil interior (Double pancake 코일 내부의 절연구성 연구)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Lee, Joung-Won;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

Gate Insulator 두께 가변에 따른 TFT소자의 전기적 특성 비교분석

  • Kim, Gi-Yong;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.39-39
    • /
    • 2009
  • We fabricated p-channel TFTs based on poly Silicon. The 35nm thickness silicon dioxide layer structure got higher $I_{on}/I_{off}$ ratio, field-effect Mobility and output current than 10nm thickness. And 35nm layer showed low leakage current and threshold voltage. So, 35nm thickness silicon dioxide layer TFTs are faster reaction speed and lower power consumption than 10nm thickness.

  • PDF