• Title/Summary/Keyword: double bond

Search Result 335, Processing Time 0.03 seconds

Formation and Inhibition of Cholesterol Oxidation Products (COPs) in Foods; An Overview (식품 내 콜레스테롤 산화 생성물(COPs)의 생성 및 억제; 개요)

  • Joo-Shin Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1163-1175
    • /
    • 2023
  • Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.

Characteristic of Aromatic Amino Acid Substitution at α96 of Hemoglobin

  • Choi, Jong-Whan;Lee, Jong-Hyuk;Lee, Kwang-Ho;Lee, Hyean-Woo;Sohn, Joon-Hyung;Yoon, Joon-Ho;Yeh, Byung-Il;Park, Seung-Kyu;Lee, Kyu-Jae;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • Replacement of valine by tryptophan or tyrosine at position $\alpha$96 of the $\alpha$ chain ($\alpha$96Val), located in the ${\alpha}_1{\beta}_2$ subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the $\alpha$96 position. The characteristic of aromatic amino acid substitution at the $\alpha$96 of hemoglobin has been further investigated by producing double mutant r Hb ($\alpha$42Tyr$\rightarrow$ Phe, $\alpha$96Val$\rightarrow$Trp). r Hb ($\alpha$42Tyr$\rightarrow$Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between $\alpha$42Tyr and $\beta$99Asp in the ${\alpha}_1{\beta}_2$ subunit interface of deoxy Hb A. The second mutation, $\alpha$96Val$\rightarrow$Trp, may compensate the functional defects of r Hb ($\alpha$42Tyr$\rightarrow$Phe), if the stability due to the introduction of trypophan at the $\alpha$96 position is strong enough to overcome the defect of r Hb ($\alpha$42Tyr$\rightarrow$Phe). Double mutant r Hb ($\alpha$42Tyr$\rightarrow$Phe, $\alpha$96Val$\rightarrow$Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb ($\alpha$42Tyr$\rightarrow$Phe). $^1$H NMR spectroscopic data of r Hb ($\alpha$42Tyr$\rightarrow$Phe, $\alpha$96Val$\rightarrow$Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between $\alpha$42Tyr and $\beta$99Asp is essential for the novel oxygen binding properties of deoxy Hb ($\alpha$96Val$\rightarrow$Trp).

Kinetics and Mechanism of Alkalie Hydrolysis of Cinnamonitrile (II) (Cinnamonitrile의 알카리 가수분해(加水分解) 반응(反應)메카니즘 (II))

  • Sung, Nack Do;Chung, Woo Jin;Kwon, Ki Sung;Park, Byung Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.354-364
    • /
    • 1983
  • Confonmation of (Z)-cinnamonitrile have been studied by molecular orbital theoretically using extended Huckel theory(EHT) and CNDO/2 molecular orbital calculation methods. The results indicate that the stability of conformation is(Z)-gauch>(Z)-planar. The rate constants for alkalie hydrolysis of cinnamonitrile at pH 7.0-14.0 range have been determined by ultra-violet spectrophotometry in 50% methanol at $25^{\circ}C$ and the following rate equation which can be applied over wide pH range was obtained; $${\therefore}k=({\frac{1.41{\times}10^{-14}+1.21{\times}10^7/[H_3O^+]}{2.65{\times}10^{-7}+1.64/[H_3O^+]})+9.14{\times}10^9/[H_3O^+]$$ The rate equation reveals that, at pH 7.0-10.0, the reaction is initiated by the addition of water molecule to unsaturated cabon-carhon double bond of cinnamonitrile and ${\alpha}C-{\beta}C$ bond scission follow subsequently in neutral and alkalie media. At pH 12.0-14.0, in strong alkalie solution, that so-called Michael type nucleophilic addition that the over-all rate constants is only dependent upon the concentration of hydroxide ion occurs competitively and are very complicated. Hence, the reaction mechanism of alkalie hydrolysis of cinnamonitrile which did not carefully before can be fully explained.

  • PDF

Analysis on the Surface Hydrophilicity & Hydrophobicity Mechanism of Polymer Composites (고분자 복합재료의 표면 친수화 및 소수화 메커니즘 해석)

  • Lim, Kyung-Bum;Roh, Tae-Ho;Lee, Jae-Oy
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3437-3443
    • /
    • 2013
  • The polymer insulators have been extensively used as an alternate material of ceramic insulators. However, when they are used in practical conditions, there are many problems of decreasing performance and shortening lifetime due to the exposures of degradation factors applied from the outdoor situations. Accordingly, the analysis of polymer degradations has been getting influential too late as one of important subjects for improvements of safety and reliability. Heat, water treatments are arbitrary simulated for finding out the initiations and processes of surface degradation on the polymer surface. Especially, this study is focused on the chemical changes properties. From the analysis of hydrophilic and hydrophobic molecular structures, final modeling of surface degradation is accomplished. We checked the contact angle depending on heat and moisturized accelerated degradation and ran an XPS analysis to check the mechanism change of the surface of the PCB polymer composite. The surface that had a tendency to attract moisture showed a decrease in the contact angle and generated a large amount of carboxyl($-COO^*$) radicals. The hydrophobized surface showed an increase in the contact angle and had a stable chemical composition constituted of the breakaway of oxygen radicals and the formation of double bond by carburization.

Study on the Fire Cause Analysis for Explosives Waste by Thermal Analysis Experiment (열분석 실험에 의한 화약류 폐기물의 화재원인분석에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • when the explosive wastes to be treated as designated wastes are brought into the wastes treatment plant by mistake and lead to an explosion in the wastes disposal process, many people and property damage are involved. Waste should be treated properly. As mentioned in this paper, ignition reac- tion tests of ignitable re-burning of explosives packing material waste (solid butadiene) confirmed that ignition was easily occurred, and that even small ignition sources were easily ignited and burned quickly and explosively. In particular, when explosives are loaded into incineration wastes in large quantities and mixed with organic compound wastes, such as fire and explosion accidents caused by explosives packing materials at waste disposal sites, flammable and oxidative gases are generated due to mutual oxidation and pyrolysis It is confirmed that there is a possibility that ignition sources such as spark ignite and instantaneously lead to explosion. It is hoped that this study will be a small reference for on - site detection in the field of fire, and it is expected that the fire - fighting agency will be recognized as a fire investigation agency and will contribute to the improvement of the credibility.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

The Synthesis and Characterization of (TBMA)Macromer Grafted Anionic Acrylic Copolymer ((TBMA)Macromer를 그라프트시킨 음이온성 아크릴 공중합체의 합성과 물성)

  • Kim, Hyoung-Ook;Noh, Si-Tae;Kang, Shin-Chun
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.627-636
    • /
    • 1993
  • Anionic acrylic resin utilizing macromer(TBMA-g-MMA) copolymer was synthesized by preparing (TBMA) macromer using anionic living polymerization, followed by graft copolymerization with MMA macromer. To control the anionic site content in graft copolymer, the relative composition((TBMA) macromer/MMA ratio) of the graft copolymer was controlled at 7/3, 10/90, 15/85, 20/80, 30/70, 40/60, 50/50 in weight content. In the course of anionic living polymerization of(TBMA) macromer, broad molecular weight distribution (1.4~1.5) was obtained by using n-butyllithium-diphenyethylene initiatior system at $-78^{\circ}C$. To introduce the double bond at the end of chain in termination step, methacryloyl chloride was reacted after insertion of benzaldehyde as capping material. Moreover, TBMA parts in graft copolymer were hydrolyzed in the presence of p-toluenesulfonic acid catalyst, and neutralization of graft copolymer with triethylamine was granted acrylic resin to anionic site. Molecular weight and molecular weight distribution of(TBMA) macromer were determined by GPC, and the hydrolysis of TBMA with neutralization of acrylic resin were determined by IR and NMR. From water dispersion and stability point of view, stable dispersion state appeared at low molecular weight(TBMA) macromer with a small TBMA content as a result of scrutiny about the relation to TBMA content and branch length for(TBMA) macromer molecular weight in graft copolymer.

  • PDF

Hygienic Consideration on the Quality Change of Perilla Oil (들기름의 품질변화에 대한 위생적 고찰)

  • Park Geon-yong;Cho Sung-ja;Jung Bo-kyung;Kim Tea-rang;Lee Chan-soo;Chough Nam-joon
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2005
  • Perilla oil was measured on hygiene state and quality change for oil press condition. All sample .was commercially salted perilla oil, and was tested standard items. The result showed violative rate of $23.1\%$, and violative items were acid value and iodine value. Relationship between D.B.I. and iodine value was 0.78, so that unsuitability of iodine value should be caused of oxidation factor. But acid value was not relationship comparatively. The quality change appeared very small by roasting conditions, but quality of perilla seed gaye many influence on quality of oil. Therefore use of fresh perilla seed is a matter of great importance to quality of perilla oil. Perilla oil was demanded many attention on Quality management for stage and sold period because of high possibility of quality change.

Bilolgical Activities of Conjugated Linoleic Acid (CLA) and Animal Products (Conjugated Linoleic Acid (CLA)의 생리활성과 축산식품)

  • Hur, S.J.;Lee, J.I.;Ha, Y.L.;Park, G.B.;Joo, S.T.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.427-442
    • /
    • 2002
  • Conjugated linoleic acid(CLA) is a collective term for a group of positional (c8, c10; c9, c11; c10, c12, and c11, c13) and geometric(cis,cis; cis,trans; trans,cis; and trans,trans) isomers of octadecadienoic acid (linoleic acid) with conjugated double bond system. CLA has been shown to have a variety of biological effects. Major effects of CLA on health, such as anti-cancer, anti-oxidation, anti-atherosclerosis and improving immuno-responses, might be derived or partially derived from the alternated lipid metabolism after CLA feeding. Most of studies on the effect of CLA on fat metabolism are concentrated on rats, mice, pigs and other mammals. The CLA inhibited carcinogen-induced neoplasia in several animal models and inhibited the proliferation of human malignant melanoma, colorectal and breast cancer cells and CLA reduced the atherosclerosis. Several studies have determined the antioxidant property of CLA; however, the property still remains controversial. Some of the studies have shown that CLA acted as an antioxidant, whereas some other studies have demonstrated that CLA might be a prooxidant. Several studies suggested that CLA could reduce fat accumulation in mammals. CLA was suggested to promote muscle growth and reduce fat deposition in mouse, and improve feed efficiency in rats. CLA has been shown to inhibit the activity of stearoyl-CoA reductase. CLA also reduced the content of arachidonic acid. Since arachidonic acid, and eicosapentaenoic acid (EPA) and docosahexenoic acid (DHA) are synthesized by different pathways, reducing the synthesis of arachidonic acid may not mean reducing that of EPA and DHA. Many sutdies have been shown biological effects of CLA. Therefore, further research is needed to answer the following questions: 1) how to synthesize the new CLA by new methods, 2) why CLA has shown biological effects, 3) how to increase CLA effects in animal products.

Studies on resveratrol and its metabolite in human urine by GC/MS (GC/MS를 이용한 요 중 resveratrol과 그 대사체에 관한 연구)

  • Jung, Hyun-Joo;Paeng, Ki-Jung;Kim, Yun-Je
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.142-149
    • /
    • 2011
  • This study was conducted to define metabolite of the resveratrol by gas chromatography- time-offlight mass spectrometric detection. From these results, we suppose that the structure of metabolite is the result of reduction of double-bond attached by two-phenyl groups. Also, validity of method for determining metabolite of resveratrol and endogenous steroids was tested. The recoveries ranged from 96.47 to 114.74%, and intraand inter-day precision ranged 11.40 - 10.87% and 1.10 - 10.93%, accuracy ranged 80.03 - 119.92% and 80.02 - 119.56%, respectively. Resveratrol and endogenous steroids had correlation coefficients above or equal to 0.996. The method was successfully validated for the determination of resveratrol and endogenous steroids. Urinary samples from volunteers dosed resveratrol were analyzed to confirm a correlation resveratrol and its metabolite. From these results, the highest level of resveratrol and its metabolite was excreted in 10 - 15 hr more slowly than common drug, and conversion rate of metabolite was higher in woman than that in man. In addition, endogenous steroids were shown same the highest level of 10 - 15 hr. For estrone and estradiol, sensitivity was relatively higher in female than in man. And there were no significant changes of excretion patterns in the other endogenous steroids. Thus, we assumed that activation of resveratrol has impact on woman than man.