• Title/Summary/Keyword: doped LaMn$O_3$

Search Result 39, Processing Time 0.023 seconds

Structural and Dielectric Properties of the Doped (Ba,Sr)$TiO_3$ Ceramics (불순물이 첨가된 (Ba,Sr) $TiO_3$ 세라믹의 구조 및 유전특성)

  • 임성수;한명수;정민석;김태훈;이금성;한석룡;이성갑
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.33-36
    • /
    • 1998
  • BST(66/34) and BSCT(60/30/10) ceramics were prepared by mixed oxide method and studied about the microstructural and dielectric properties with $Y_2$O$_3$, Dy$_2$O$_3$, La$_2$O$_3$, MnCO$_3$. The grain size of undoped BST was 20~30 ${\mu}{\textrm}{m}$, but that of BST, doped content of MnCO$_3$ was 0.1 mol%, was decreased with increasing the contents of $Y_2$O$_3$. As the content of $Y_2$O$_3$ was Increased, Tc was shifted to lower temperature and dielectric constant at Tc was decreased. The dielectric constant of doped BSCT(60/30/10) ceramics ( 0.9 mol% $Y_2$O$_3$. and 0.1 mol% MnCO$_3$) was about 8, 000 at Tc( 22$^{\circ}C$ ).

  • PDF

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet;Yoon, Jang Yuel;Thakre, Atul;Peddigari, Mahesh;Jeong, Dae-Yong;Kong, Young-Min;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.412-420
    • /
    • 2019
  • In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

The Relationship between Domain Switching and Acoustic Emission in (Pb,La)$TiO_3$ Ferroelectric Ceramacs ((Pb,La)$TiO_3$ 강유전체 세라믹에서 분역반전과 Acoustic Emission의 관계)

  • 최동구;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.672-678
    • /
    • 1996
  • The relationship between domain switching and acoustic emission (AE) during poling was investigated using the tetragonal ferroelectric ceramics with composition of (Pb,La)TiO3+0.01MnO2 The amount of AE generation during poling increased with increasing dc electric field and raising temperature. It was confirmed that the change of the amount of AE generation with poling condition resulted from the difference of the amount of 90$^{\circ}$ domain switching and total amount of AE generation for 10 minutes was approximately proportional to the amount of 90$^{\circ}$domain switching. The A generations of two specimens which have different tetragonality rations(c/s rations) 15 at% and 24at% La-doped were also investigated. The sample with c/a ratio of 1.012 where 90$^{\circ}$ domains are dominate had larger amount of AE generation and 90$^{\circ}$ domain switching compared with the sample with c/a ratio of 1.004 where 180$^{\circ}$ domains are dominant.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.

Fabrication, Magnetic and Magnetoresistive Properties of Bi-Doped Lanthanum Manganites (Bi 첨가 란탄 망가나이트의 제조, 자기 및 자기저항 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.239-244
    • /
    • 1999
  • Bi-doped lanthanum magnetics $(La_{0.67-x}Bi_xCa_{0.33}MnO_3(x\;=\;0,\; 0.04,\; 0.1,\; 0.2))$ samples have been prepared by standard ceramic process. The crystallinity and microstructures of the samples have been investigated by x-ray diffractometry and optical microscopy, respectively. The magnetic and magnetoresistive properties of the samples have been measured by vibrating sample magnetometery and van der Pauw method, respectively, at the temperatures ranging of 100 K~300 K with applied magnetic field of 0.4~0.5 T. Good crystallinity and high Curie temperature (275 K) have been obtained for the Bi-doped samples with small dosage (x = 0.04, 0.1) even they were sintered at 120$0^{\circ}C$, which is about 20$0^{\circ}C$ lower than normal sintering temperature of 140$0^{\circ}C$. The Bi-doped samples with the small dosage showed lower relative electrical resistivity and higher magneto-resistive ratio compared to the undoped sample in the most temperatures measured. The Bi-doped samples also exhibited large magnetoresisitve ratio (maximum of 15% for x = 0.1) at room temperature even under a weak magnetic field of 0.4 T.

  • PDF

The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode (스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향)

  • Hwang, Ho-June;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.