• Title/Summary/Keyword: docking

Search Result 613, Processing Time 0.034 seconds

Docking System for Unmanned Underwater Vehicle using Reduced Signal Strength Indicator (전자기파의 감쇄신호를 이용한 무인 잠수정의 도킹시스템 개발)

  • Lee, Gi-Hyeon;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.830-836
    • /
    • 2012
  • According to increasing the importance of underwater environments, the needs of UUV are growing. This paper represents the mechanism and algorithm of UUV docking system with 21-inch torpedo tubes for military submarines as a docking station. To improve the reliability of the docking, torpedo tubes launch a wired ROV and next the ROV combined with UUV is retrieved. For estimating the relative position between the ROV and UUV, in this paper, combining RF sensors and vision system is proposed. The RSSI method of RF sensors is used to estimate the distance and the optical image is combined for the directional information.

A Simple and Efficient Docking Method to the Cyclin-Dependent Kinase 2

  • Park, Kwang-Su;Kim, Jin-Young;Chong, You-Hoon;Choo, Hyun-Ah
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2007
  • The subtle but significant differences and thereby the lack of consensus in active site structures among the crystal structures of cyclin-dependent kinase 2 (CDK2) has hampered structure-based drug design. In this study, we devised a simple but effective ‘mutation, pharmacophore-guided docking, followed by mutation' strategy to generate an “average” CDK2 structure, which was used for ligand docking study to successfully reproduce 30 out of 32 X-ray ligand positions within 2.0 A of heavy atom RMSD. This novel docking method was applied for structure-based 3D QSAR with CoMSIA study of a series of structurally related ligands, which showed a good discrimination between CDK2 binders and nonbinders.

Molecular Docking Study of Anti-diabetic Xanthones from Garcinia Xanthochymus

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.137-140
    • /
    • 2017
  • Diabetes mellitus has become a major growing public health problem worldwide. More than 90% of all diabetes cases are classified as type 2 diabetes (T2D), which is also known as non-insulin dependent diabetes. Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. Recently twelve anti-diabetic xanthones were isolated from the bark of Garcinia xanthochymus. Hence, in the present study, molecular docking was carried out for these twelve xanthones. The objective of this work is to study the interaction of the newly isolated xanthones with PTP1B. The docking results showed that xanthones have good interactions and has better docking score with PTP1B and suggest LYS120 and ASP181 are the important residues involved in interaction between PTP1B enzyme and the xanthones.

Application of Docking Methods: An Effective In Silico Tool for Drug Design

  • Kulkarni, Seema;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.100-103
    • /
    • 2013
  • Using computational approaches we can dock small molecules into the structures of Macromolecular targets and then score their potential complementarity to binding sites is widely used in hit identification and lead optimization techniques. This review seeks to provide the application of docking in structure-based drug design (binding mode prediction, Lead Identification and Lead optimization), and also discussed how to manage errors in docking methodology in order to overcome certain limitations of docking and scoring algorithm.

Molecular Docking Analysis of Protein Phosphatase 1D (PPM1D) Receptor with SL-175, SL-176 and CDC5L

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Protein phosphatase manganese dependent 1D (PPM1D), a Ser/Thr protein phosphatise, play major role in the cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Hence, analysis on the structural features required for the formation of PPM1D-inhibitor complex becomes essential. In this study, we have performed molecular docking of SL-175 and -176 and protein-protein docking of CDC5L with PPM1D. On analysing the docked complexes, we have identified the important residues involved in the formation of protein-ligand complex. Research concentrating on these residues could be helpful in understanding the pathophysiology of various tumors related to PPM1D.

Molecular Docking Study of Novel Anti-Hepatitis B Virus Agents Isolated from Talaromyces Species

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • Hepatitis B virus is the leading source of liver disorders and is a global health problem and needs advancements in its treatment against increasing problems. Recently five vanitaracin derivatives were isolated from the fungus Talaromyces species which have anti-Hepatitis B virus activity. Hence, in the present study, molecular docking was carried out with five vanitaracin derivatives isolated from Talaromyces species and three known inhibitors.The objective of this work is to study the interaction of newly isolated compounds and compare its interaction with known inhibitors. The docking results revealed that vanitaracin derivatives have good interactions and has better docking score with the Hepatitis B virus and suggest SER2, SER4 and ASP30 are important residues involved in interaction with the inhibitors. These result authenticates vanitaracin derivatives contributes to inhibitory activity of Hepatitis B virus to treat liver disorders.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

Development and Test of a Docking Type Automatic Landing System for Shipboard Landing (드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험)

  • Minsu Park;Sungyug Kim;Hyeok Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.

Development of Grid Service Based Molecular Docking Application (그리드 서비스 기반 분자 다킹 어플리케이션 개발)

  • Lee, HwaMin;Chin, SungHo;Lee, JongHyuk;Park, Seongbin;Yu, HeonChang
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.4
    • /
    • pp.63-74
    • /
    • 2006
  • A molecular docking is thc process of reducing an unmanageable number of compounds to a limited number of compounds for the target of interest by means of computational simulation. And it is one of a large scale scientific application that requires large computing power and data storage capability. Previous applications or software for molecular docking were developed to be run on a supercomputer, a workstation, or a cluster computer. However the virtual screening using a supercomputer has a problem that a supercomputer is very expensive and the virtual screening using a workstation or a cluster-computer requires a long execution time. Thus we propose Grid service based molecular docking application. We designed a resource broker and a data broker for supporting efficient molecular docking service and developed various services for molecular docking.

  • PDF