• Title/Summary/Keyword: division problem

Search Result 2,915, Processing Time 0.031 seconds

Measurement of Ion-induced Secondary Electron Emission Yield of MgO Films by Pulsed Ion Beam Method

  • Lee, Sang-Kook;Kim, Jae-Hong;Lee, Ji-Hwa;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2002
  • Measurement of the ion-induced secondary electron emission coefficient (${\gamma}_i$) for insulating films is hampered by an unavoidable charging problem. Here, we demonstrate that a pulsed ion beam technique is a viable solution to the problem, allowing for accurate measurement of ${\gamma}_i$ for insulating materials. To test the feasibility of the pulsed ion beam method, the secondary electron emission coefficient from n-Si(100) is measured and compared with the result from the conventional continuous beam method. It is found that the ${\gamma}_i$ from n-Si(100) by the ion pulsed beam measured to be 0.34, which is the same as that obtained by continuous ion beam. However, for the 1000 A $SiO_2$ films thermally deposited on Si substrate, the measurement of ${\gamma}_i$ could be carred out by the pulsed ion method, even though the continuous beam method faced charging problem. Thus, the pulsed ion beam is regarded to be one of the most suitable methods for measuring secondary electron coefficient for the surface of insulator materials without experiencing charging problem. In this report, the dependence of ${\gamma}_i$ on the kinetic energy of $He^+$ is presented for 1000 ${\AA}$ $SiO_2$ films. And the secondary electron emission coefficient of 1000 ${\AA}$ MgO e-beam-evaporated on $SiO_2/Si$ is obtained using the pulsing method for $He^+$ and $Ar^+$ with energy ranging from 50 to 200 eV, and then compared with those from the conventional continuous method.

A Study on Dynamic Lot Sizing Problem with Random Demand (확률적 수요를 갖는 단일설비 다종제품의 동적 생산계획에 관한 연구)

  • Kim, Chang Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2005
  • A stochastic dynamic lot sizing problem for multi-item is suggested in the case that the distribution of the cumulative demand is known over finite planning horizons and all unsatisfied demand is fully backlogged. Each item is produced simultaneously at a variable ratio of input resources employed whenever setup is incurred. A dynamic programming algorithm is proposed to find the optimal production policy, which resembles the Wagner-Whitin algorithm for the deterministic case problem but with some additional feasibility constraints.

Solution Methods for Reliability Optimization of a Series System with Component Choices (부품선택이 존재하는 직렬시스템의 신뢰성 최적화 해법)

  • Kim, Ho-Gyun;Bae, Chang-Ok;Kim, Jae-Hwan;Son, Joo-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Reliability has been considered as an important design measure in various industrial systems. We discuss a reliability optimization problem with component choices (ROP-CC) subject to a budget constraint. This problem has been known as a NP-hard problem in the reliability design fields. Several researchers have been working to find the optimal solution through different heuristic methods. In this paper, we describe our development of simulated annealing (SA) and tabu search (TS) algorithms and a reoptimization procedure of the two algorithms for solving the problem. Experimental results for some examples are shown to evaluate the performance of these methods. We compare the results with the solutions of a previous study which used ant system (AS) and the global optimal solution of each example obtained through an optimization package, CPLEX 9.1. The computational results indicate that the developed algorithms outperform the previous results.

Optimal Conveyor Selection Problem on a Diverging Conveyor Junction Point (컨베이어 분기점에서의 최적 인출 컨베이어 선택 문제)

  • Han, Yong-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.118-126
    • /
    • 2009
  • This research investigates the problem of minimizing setup costs in resequencing jobs having first-in, first-out(FIFO) constraints at conveyorized production or assembly systems. Sequence changing at conveyor junctions in these systems is limited due to FIFO restriction. We first define the general problem of resequencing jobs to workstations satisfying precedence relationships between jobs(Generalized Sequential Ordering Problem, GSOP). Then we limit our scope to FIFO precedence relationships which is the conveyor selection problem at a diverging junction(Diverging Sequential Ordering Problem, DSOP), modeling it as a 0-1 integer program. With the capacity constraint removed, we show that the problem can be modeled as an assignment problem. In addition, we proposed and evaluated the heuristic algorithm for the case where the capacity constraint cannot be removed. Finally, we discuss the case study which motivated this research and numerical results.

A Scalable Multicasting with Group Mobility Support in Mobile Ad Hoc Networks

  • Kim, Kap-Dong;Lee, Kwang-Il;Park, Jun-Hee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In mobile ad hoc networks, an application scenario requires mostly collaborative mobility behavior. The key problem of those applications is scalability with regard to the number of multicast members as well as the number of the multicast group. To enhance scalability with group mobility, we have proposed a multicast protocol based on a new framework for hierarchical multicasting that is suitable for the group mobility model in MANET. The key design goal of this protocol is to solve the problem of reflecting the node's mobility in the overlay multicast tree, the efficient data delivery within the sub-group with group mobility support, and the scalability problem for the large multicast group size. The results obtained through simulations show that our approach supports scalability and efficient data transmission utilizing the characteristic of group mobility.

A Real-Time Algorithm for Timeslot Assignment in ISM System with DVB-RCS

  • Lee, Ik-Sun;Sung, Chang-Sup;Jin, Gwang-Ja;Han, Ki-Seop
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.329-335
    • /
    • 2007
  • This paper considers a timeslot assignment problem in an interactive satellite multimedia (ISM) system with digital video broadcast-return channel via satellite (DVB-RCS). The timeslot assignment problem is formulated as a binary integer programming to maximize the overall weighted throughput and is shown to be NP-hard. Thus, three real-time heuristic algorithms including ratio-based, packet-size (PS)-based, and transmission gain (TG)-based are derived, and some computational experiments are made. Considering the results, the ratio-based heuristic algorithm is demonstrated to be the most effective and efficient. We propose adapting the ratio-based heuristic algorithm to the timeslot assignment problem to greatly improve the ISM system utilization.

  • PDF

Economic Design of Local Area Networks using Genetic Algorithms (유전자 알고리즘을 이용한 경제적 LAN 설계)

  • Yum Chang-Sun;Lee Han-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • In this paper, the design problem of local area networks is defined as finding the network topology minimizing cost subject to reliability constraint. The design problem includes issues such as multiple choices of link type for each possible link, multiple choices of hub type for each hub, and allocation of the users to the hubs. To efficiently solve the problem, a genetic approach is suggested. According to the experiments, the proposed approach improves search performance.

Tabu Search Heuristic Algorithm for Designing Broadband Convergence Networks (BcN 서비스 가입자 망 설계를 위한 타부서치 휴리스틱 알고리즘 개발)

  • Lee, Youngho;Yun, Hyunjung;Lee, Sunsuk;Park, Noik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • convergence networks (BcN). The problem seeks to minimize the total cost of switch and cable while satisfying the requirement of demand and quality of service (QoS). We develop mixed integer programming models to obtain the optimal switch location of the access network. We develop a Tabu Search (TS) heuristic algorithm for finding a good feasible solution within a reasonable time limit. We propose real networks with up to 25 nodes and 180 demands. In order to demonstrate the effectiveness of the proposed algorithm, we generate lower bounds from nonlinear QoS relaxation problem. Computational results show that the proposed heuristic algorithm provides upper bounds within 5% optimality gap in 10 seconds.

A FINITE ELEMENT APPROXIMATION OF A FOURTH-ORDER NONLINEAR BOUNDARY VALUE PROBLEM

  • Lee, Hyun-Yong;Ohm, Mi-Ray;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.935-942
    • /
    • 2001
  • A finite element approximation of a fourth-order nonlinear boundary value problem is given. In the direct implementation, a nonlinear system will be obtained and also a full size matrix will be introduced when Newton’s method is adopted to solve the system. To avoid this difficulty we introduce an iterative scheme which can be shown to converge the positive solution of the system lying between 0 and $sin{\pi}x$.

Development of New Algorithm for RWA Problem Solution on an Optical Multi-Networks

  • Tack, Han-Ho;Kim, Chang-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • This paper considers the problem of routing connections in a optical multi tree networks using WDM (Wavelength Division Multiplexing), where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, so that connections whose paths share a common link in the network are assigned different wavelengths. The problem of optimal coloring of the paths on the optical multi-networks is NP-hard[1], but if that is the coloring of all paths, then there exists efficient polynomial time algorithm. In this paper, using a "divide & conquer" method, we give efficient algorithm to assign wavelengths to all the paths of a tree network based on the theory of [7]. Here, our time complexity is 0(n4log n).