• Title/Summary/Keyword: division of fractions

Search Result 552, Processing Time 0.025 seconds

Examining how elementary students understand fractions and operations (초등학생의 분수와 분수 연산에 대한 이해 양상)

  • Park, HyunJae;Kim, Gooyeon
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.453-475
    • /
    • 2018
  • This study examines how elementary students understand fractions with operations conceptually and how they perform procedures in the division of fractions. We attempted to look into students' understanding about fractions with divisions in regard to mathematical proficiency suggested by National Research Council (2001). Mathematical proficiency is identified as an intertwined and interconnected composition of 5 strands- conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition. We developed an instrument to identify students' understanding of fractions with multiplication and division and conducted the survey in which 149 6th-graders participated. The findings from the data analysis suggested that overall, the 6th-graders seemed not to understand fractions conceptually; in particular, their understanding is limited to a particular model of part-whole fraction. The students showed a tendency to use memorized procedure-invert and multiply in a given problem without connecting the procedure to the concept of the division of fractions. The findings also proposed that on a given problem-solving task that suggested a pathway in order for the students to apply or follow the procedures in a new situation, they performed the computation very fluently when dividing two fractions by multiplying by a reciprocal. In doing so, however, they appeared to unable to connect the procedures with the concepts of fractions with division.

A Study on Operations with Fractions Through Analogy (유추를 통한 분수 연산에 관한 연구)

  • Kim Yong Tae;Shin Bong Sook;Choi Dae Uk;Lee Soon Hee
    • Communications of Mathematical Education
    • /
    • v.19 no.4 s.24
    • /
    • pp.715-731
    • /
    • 2005
  • There are five contexts of division algorithm of fractions such as measurement division, determination of a unit rate, reduction of the quantities in the same measure, division as the inverse of multiplication and analogy with multiplication algorithm of fractions. The division algorithm, however, should be taught by 'dividing by using reciprocals' via 'measurement division' because dividing a fraction by a fraction results in 'multiplying the dividend by the reciprocal of the divisor'. If a fraction is divided by a large fraction, then we can teach the division algorithm of fractions by analogy with 'dividing by using reciprocals'. To achieve the teaching-learning methods above in elementary school, it is essential for children to use the maniplatives. As Piaget has suggested, Cuisenaire color rods is the most efficient maniplative for teaching fractions. The instruction, therefore, of division algorithm of fractions should be focused on 'dividing by using reciprocals' via 'measurement division' using Cuisenaire color rods through analogy if necessary.

  • PDF

An Analysis of Students' Understanding of Operations with Whole Numbers and Fractions (자연수와 분수 연산에 대한 학생들의 이해 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.51 no.1
    • /
    • pp.21-45
    • /
    • 2012
  • The purpose of the study was to investigate how students understand each operations with whole numbers and fractions, and the relationship between their knowledge of operations with whole numbers and conceptual understanding of operations on fractions. Researchers categorized students' understanding of operations with whole numbers and fractions based on their semantic structure of these operations, and analyzed the relationship between students' understanding of operations with whole numbers and fractions. As the results, some students who understood multiplications with whole numbers as only situations of "equal groups" did not properly conceptualize multiplications of fractions as they interpreted wrongly multiplying two fractions as adding two fractions. On the other hand, some students who understood multiplications with whole numbers as situations of "multiplicative comparison" appropriately conceptualize multiplications of fractions. They naturally constructed knowledge of fractions as they build on their prior knowledge of whole numbers compared to other students. In the case of division, we found that some students who understood divisions with whole numbers as only situations of "sharing" had difficulty in constructing division knowledge of fractions from previous division knowledge of whole numbers.

Middle School Mathematics Teachers' Understanding of Division by Fractions (중학교 수학 교사들의 분수나눗셈에 대한 이해)

  • Kim, Young-Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.147-162
    • /
    • 2007
  • This paper reports an analysis of 19 Chinese and Korean middles school mathematics teachers' understanding of division by fractions. The study analyzes the teachers' responses to the teaching task of generating a real-world situation representing the meaning of division by fractions. The findings of this study suggests that the teachers' conceptual models of division are dominated by the partitive model of division with whole numbers as equal sharing. The dominance of partitive model of division constraints the teachers' ability to generate real-world representations of the meaning of division by fractions, such that they are able to teach only the rule-based algorithm (invert-and-multiply) for handling division by fractions.

  • PDF

Teaching of Division of Fractions through Mathematical Thinking

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.17 no.1
    • /
    • pp.15-27
    • /
    • 2013
  • Division of fractions is always a difficult topic for primary school students. Most of the presentations in teaching the topic in textbooks are procedural, asking students to invert the second fraction and multiply it with the first one, that is, $$\frac{a}{b}{\div}\frac{c}{d}=\frac{a}{b}{\times}\frac{d}{c}$$. Such procedural approach in teaching diminishes both the understanding of structure in mathematics and the interest in learning the subject. This paper discussed the formulation of teaching the division of fractions, which based on research lessons in some primary five classrooms. The formulated lessons started with an analogy to division of integers and working with division of fractions with equal denominators and then extended to division of fractions in general. It is found that the using of analogy helps students to invent their procedure in working the division problem. Some procedures found by students are discussed, with the focus on the development of their invention and mathematical thinking.

Teaching Multiplication & Division of Fractions through Contextualization (맥락화를 통한 분수의 곱셈과 나눗셈 지도)

  • Kim, Myung-Woon;Chang, Kyung-Yoon
    • School Mathematics
    • /
    • v.11 no.4
    • /
    • pp.685-706
    • /
    • 2009
  • This dissertation is aimed to investigate the reason why a contextualization is needed to help the meaningful teaching-learning concerning multiplications and divisions of fractions, the way to make the contextualization possible, and the methods which enable us to use it effectively. For this reason, this study intends to examine the differences of situations multiplying or dividing of fractions comparing to that of natural numbers, to recognize the changes in units by contextualization of multiplication of fractions, the context is set which helps to understand the role of operator that is a multiplier. As for the contextualization of division of fractions, the measurement division would have the left quantity if the quotient is discrete quantity, while the quotient of the measurement division should be presented as fractions if it is continuous quantity. The context of partitive division is connected with partitive division of natural number and 3 effective learning steps of formalization from division of natural number to division of fraction are presented. This research is expected to help teachers and students to acquire meaningful algorithm in the process of teaching and learning.

  • PDF

A proposal to the construction of textbook contents of fraction division connected to problem context (문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안)

  • Shin, Joonsik
    • The Mathematical Education
    • /
    • v.52 no.2
    • /
    • pp.217-230
    • /
    • 2013
  • This study attempts to propose the construction of textbook contents of fraction division and to suggest a method to strengthen the connection among problem context, manipulation activities and symbols by proposing an algorithm of dividing fractions based on problem contexts. As showing the suitable algorithm to problem context, it is able to understand meaningfully that the algorithm of fractions division is that of multiplication of a reciprocal. It also shows how to deal with remainder in the division of fractions. The results of this study are expected to make a meaningful contribution to textbook development for primary students.

Division of Fractions in the Contexts of the Inverse of a Cartesian Product (카테시안 곱의 역 맥락에서 분수의 나눗셈)

  • Yim, Jae-Hoon
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2007
  • Division of fractions can be categorized as measurement division, partitive or sharing division, the inverse of multiplication, and the inverse of Cartesian product. Division algorithm for fractions has been interpreted with manipulative aids or models mainly in the contexts of measurement division and partitive division. On the contrary, there are few interpretations for the context of the inverse of a Cartesian product. In this paper the significance and the limits of existing interpretations of division of fractions in the context of the inverse of a Cartesian product were discussed. And some new easier interpretations of division algorithm in the context of a Cartesian product are developed. The problem to determine the length of a rectangle where the area and the width of it are known can be solved by various approaches: making the width of a rectangle be equal to one, making the width of a rectangle be equal to some natural number, making the area of a rectangle be equal to 1. These approaches may help students to understand the meaning of division of fractions and the meaning of the inverse of the divisor. These approaches make the inverse of a Cartesian product have many merits as an introductory context of division algorithm for fractions.

  • PDF

An Analysis of the Relationship between Students' Understanding and their Word Problem Solving Strategies of Multiplication and Division of Fractions (분수의 곱셈과 나눗셈에 대한 학생의 이해와 문장제 해결의 관련성 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2011
  • The purpose of the study was to investigate how students understand multiplication and division of fractions and how their understanding influences the solutions of fractional word problems. Thirteen students from 5th to 6th grades were involved in the study. Students' understanding of operations with fractions was categorized into "a part of the parts", "multiplicative comparison", "equal groups", "area of a rectangular", and "computational procedures of fractional multiplication (e.g., multiply the numerators and denominators separately)" for multiplications, and "sharing", "measuring", "multiplicative inverse", and "computational procedures of fractional division (e.g., multiply by the reciprocal)" for divisions. Most students understood multiplications as a situation of multiplicative comparison, and divisions as a situation of measuring. In addition, some students understood operations of fractions as computational procedures without associating these operations with the particular situations (e.g., equal groups, sharing). Most students tended to solve the word problems based on their semantic structure of these operations. Students with the same understanding of multiplication and division of fractions showed some commonalities during solving word problems. Particularly, some students who understood operations on fractions as computational procedures without assigning meanings could not solve word problems with fractions successfully compared to other students.

An Action Research on Instruction of Division of Fractions and Division of Decimal Numbers : Focused on Mathematical Connections (수학의 내적 연결성을 강조한 5학년 분수 나눗셈과 소수 나눗셈 수업의 실행 연구)

  • Kim, Jeong Won
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.351-373
    • /
    • 2017
  • The meanings of division don't change and rather are connected from whole numbers to rational numbers. In this respect, connecting division of natural numbers, division of fractions, and division of decimal numbers could help for students to study division in meaningful ways. Against this background, the units of division of fractions and division of decimal numbers in fifth grade were redesigned in a way for students to connect meanings of division and procedures of division. The results showed that most students were able to understand the division meanings and build correct expressions. In addition, the students were able to make appropriate division situations when given only division expressions. On the other hand, some students had difficulties in understanding division situations with fractions or decimal numbers and tended to use specific procedures without applying diverse principles. This study is expected to suggest implications for how to connect division throughout mathematics in elementary school.