• Title/Summary/Keyword: disturbance system

Search Result 2,379, Processing Time 0.029 seconds

Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer

  • Park, Jeong-Ju;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1466-1474
    • /
    • 2003
  • This paper presents a system modeling, controller design and implementation for a rotational inverted pendulum system (RIPS), which is an under-actuated system and has the problem of unattainable velocity state. Two control strategies are applied to the RIPS. One is a sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback. The other is the disturbance observer which estimates disturbance and some modeling errors of RIPS with less computational effort. Some simulations and various kinds of experiments are performed in order to verify that the proposed controller has the ability to control RIPS whose velocity is assumed to be unavailable. The results of the simulations and experiments show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions as well as the robustness to model uncertainties.

Design of disturbance observer and sliding mode controller for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 외란 관측기 및 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min;Yang, Hwa-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1997
  • A robust disturbance rejection controller for the hovering motion of underwater vehicles in near the surface of sea is presented. The suggested controller consists of two control parts, the one is disturbance observer for taking into account the effects of sea wave and missile-launching forces, and the other is sliding mode controller for the robust stability of underwater vehicles with model uncertainties and nonlinearities. It is shown that the sliding mode control system with disturbance observer is more effective compared with the sliding mode control system, especially in case that large sea wave force is affected.

  • PDF

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft

  • Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.584-596
    • /
    • 2019
  • This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach.

Traction Control of Automobiles using a Disturbance Observer with the Approach of Sliding Mode Control

  • Mubin, M.;Moroda, K.;Tashiro, M.;Ouchi, S.;Anabuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1738-1743
    • /
    • 2004
  • This paper presents an automobile traction control system by using a sliding mode controller with disturbance observer for estimating the car-body speed. First, we show that the control system, which combines an automobile system and a disturbance observer, can be divided into a controllable system and an estimated one. And, we found out that the effect of the traction control and ABS depends on the air resistance of the car. Then, the sliding mode control system is designed using the obtained combined system. And finally, the stability of this control system is verified by simulation and it shows a very satisfactory results.

  • PDF

Disturbance Observer based PID Controller for robustness enhancement of UAVs under the presence of wind disturbance (무인항공기의 내풍성 강화를 위한 제어기의 외란관측기 연구)

  • Oh, Seungjo;Lee, Dongjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This paper presents a method to apply disturbance observer to PID controller for robustness enhancement of UAVs. The system uncertainties and disturbances bring adverse effects on performance and stability of UAVs. In this paper, we estimate the acceleration disturbances using nonlinear disturbance observer, then compensate disturbances with composite controller. By employing nonlinear disturbance observer and composite controller, we have better performance and robustness than conventional PID controller. The asymptotical stability of nonlinear disturbance observer is presented through theoretical analysis. The estimation performance of nonlinear disturbance observer is evaluated by numerical simulation. And performance of disturbance observer based PID controller is evaluated by comparing the performance with conventional PID controller.

Compensation of Unknown Time-Varying Sinusoidal Disturbances in Nonlinear Systems using Disturbance Accommodation Technique (외란 보상 기법을 이용한 비선형시스템에서의 미지의 시변 사인파형 외란 보상)

  • Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1844-1851
    • /
    • 2007
  • This paper presents methods for the compensation of sinusoidal disturbances with unknown amplitude, phase, and time-varying frequency in nonlinear systems. In the previous disturbance accommodation methods, the sinusoidal disturbance with unknown time-invariant frequency was considered. In the proposed method, the disturbance with unknown time-varying frequency is compensated. As for the control structure, two control inputs are designed separately in such a way that one of them is designed for the nonlinear system control without considering the disturbance, and the other one uses the disturbance estimate obtained from the disturbance accommodating observer. The stability analysis is done considering the disturbance estimation error and the numerical simulation demonstrates the proposed approach.

Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset (미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계)

  • Lee, Cho-Won;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies (불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Moon, Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF