• Title/Summary/Keyword: distribution pipe

Search Result 623, Processing Time 0.03 seconds

Optimal valve installation of water distribution network considering abnormal water supply scenarios (비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.719-728
    • /
    • 2019
  • Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.

Application of modified hybrid vision correction algorithm for an optimal design of water distribution system (상수관망 최적설계를 위한 Modified Hybrid Vision Correction Algorithm의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.475-484
    • /
    • 2021
  • The optimal design for water distribution system (WDS) is not only satisfying the minimum required water pressure of the nodes, but also minimizing pipe cost, etc. The number of designs of WDS increases exponentially due to the arrangement of various pipes. Various optimization algorithms were applied to propose an optimized design of WDS. In this study, Modified Hybrid Vision Correction Algorithm (MHVCA) with improved self-adapting parameter was applied to optimal design of WDS. The performance was improved by changing the Hybrid Rate (HR) of the existing Hybrid Vision Correction Algorithm (HVCA) to nonlinear HR. To verify the performance of the proposed MHVCA, it applied to mathematical problems consisting of 2 and 30 decision variables and constrained mathematical problems. In order to review the application results of MHVCA, it was compared with Harmony Search (HS), Improved Harmony Search (IHS), Vision Correction Algorithm (VCA) and HVCA. Finally, MHVCA was applied to the optimal design problem of WDS and the results were compared with other algorithms. MHVCA showed better results than other algorithms in mathematical problems and WDS problem. MHVCA will be able to show good results by applying to various water resource engineering problems as well as problems applied in this study.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Evaluation of Emergency Water Supply Plan for Block System of Water Network using WaterGEMS (WaterGEMS모형을 이용한 상수관망 블록시스템의 비상급수계획 평가)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon;Yoo, Do-Guen;Lee, Kwang-Choon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.15-20
    • /
    • 2008
  • Hydraulic analysis of water distribution system can be divided into demand-driven analysis and pressure-driven analysis. Demanddriven analysis can give unrealistic results to simulate hydraulic conditions under abnormal operating conditions such as sudden demand increase and pipe failure. In Korea, demand-driven analysis has been used to establish emergency water supply plan in many water projects, but it is necessary to use pressure-driven analysis for establishment of emergency water supply plan. In this study, WaterGEMS model that was developed for pressure-driven analysis is used to evaluation of emergency water supply plan of J city. As the results, it was able to draw up more efficient plan for water supply in small block, and established emergency water supply plan of J city was determined to be appropriate.

Improvement of Soft Ground using Electric Heating Equipment (전기가열장치를 이용한 연약지반개량)

  • Han, Heuisoo;Im, Eunsang;Lee, Kumsung;Chang, Donghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2014
  • In this study, we developed the electric heating equipment and applied for soft ground improvement. The developed heat pipe is 4 m-length and consumes 1 kW/m, which is consisted of Ni-Cr wire. It was installed in 3.5~4.5 m below ground surface and heated for 96 hours (48 hours, 2 times). The temperature variation and vapor pressure caused by electric heating was measured by the thermometer and pressure gauge which were installed in the ground (5.0 m), and the tip resistances were measured by static electronic piezo-cone penetration test (CPT). As the results of experiments, 2-order polynomial curve was shown to adjust the variation of tip resistance and the temperature distribution with the horizontal distance from electric heater, whose R2 value is close to 1. In addition, in-situ pore-water pressure and water content was decreased.

Nano-delamination monitoring of BFRP nano-pipes of electrical potential change with ANNs

  • Altabey, Wael A.;Noori, Mohammad;Alarjani, Ali;Zhao, Ying
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • In this work, the electrical potential (EP) technique with an artificial neural networks (ANNs) for monitoring of nanostructures are used for the first time. This study employs an expert system to identify size and localize hidden nano-delamination (N.Del) inside layers of nano-pipe (N.P) manufactured from Basalt Fiber Reinforced Polymer (BFRP) laminate composite by using low-cost monitoring method of electrical potential (EP) technique with an artificial neural networks (ANNs), which are combined to decrease detection effort to discern N.Del location/size inside the N.P layers, with high accuracy, simple and low-cost. The dielectric properties of the N.P material are measured before and after N.Del introduced using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to N.Del, a finite element (FE) simulation model for N.Del location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic, therefore, FE analyses are employed to make sets of data for the learning of the ANNs. The method is applied for the N.Del monitoring, to minimize the number of FE analysis in order to keep the cost and save the time of the assessment to a minimum. The FE results are in excellent agreement with an ANN and the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.

Effect of Joint Aperture Variation on Hydraulic Behavior of the 2-D DFN System (절리간극의 변화가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2016
  • A computer program code was developed to estimate hydraulic behavior of the 2-D connected pipe network system, and implemented to evaluate the effect of joint aperture on hydraulic parameters of fractured rock masses through numerical experiments. A total of 216 stochastic 2-D DFN(discrete fracture network) blocks of $20m{\times}20m$ were prepared using two joint sets with fixed input parameters of joint orientation, frequency and size distribution. Two different cases of joint aperture variation are considered in this study. The hydraulic parameters were estimated for generated 2-D DFN blocks. The hydraulic anisotropy and the chance for equivalent continuum behavior of the DFN system were found to depend on the variability of joint aperture.

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.

Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions (느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성)

  • Ahn, Yong-Tae;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The measurement and prediction of bacterial transport of bacteria in aquatic systems is of fundamental importance to a variety of fields such as groundwater bioremediation ascending urinary tract infection. The motility of pathogenic bacteria is, however, often missing when considering pathogen translocation prediction. Previously, it was reported that flagellated E. coli can translate upstream under low shear flow conditions. The upstream swimming of flagellated microorganisms depends on hydrodynamic interaction between cell body and surrounding fluid flow. In this study, we used a breathable microfluidic device to image swimming E. coli at a glass surface under low shear flow condition. The tendency of upstream swimming motion was expressed in terms of 'A' value in parabolic equation ($y=Ax^2+Bx+C$). It was observed that high shear flow rate increased the 'A' value as the shear force acting on bacterium increased. Shorter bacterium turned more tightly into the flow as they swim faster and experience less drag force. The result obtained in this study might be relevant in studying the fate and transport of bacterium under low shear flow environment such as irrigation pipe, water distribution system, and urethral catheter.