DOI QR코드

DOI QR Code

Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions

느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성

  • Ahn, Yong-Tae (Department of Civil and Environmental Engineering, Pennsylvania State University) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, KAIST)
  • 안용태 (펜실바니아 주립대학교 토목환경공학과) ;
  • 신항식 (한국과학기술원 건설및환경공학과)
  • Received : 2011.02.17
  • Accepted : 2011.03.30
  • Published : 2011.03.31

Abstract

The measurement and prediction of bacterial transport of bacteria in aquatic systems is of fundamental importance to a variety of fields such as groundwater bioremediation ascending urinary tract infection. The motility of pathogenic bacteria is, however, often missing when considering pathogen translocation prediction. Previously, it was reported that flagellated E. coli can translate upstream under low shear flow conditions. The upstream swimming of flagellated microorganisms depends on hydrodynamic interaction between cell body and surrounding fluid flow. In this study, we used a breathable microfluidic device to image swimming E. coli at a glass surface under low shear flow condition. The tendency of upstream swimming motion was expressed in terms of 'A' value in parabolic equation ($y=Ax^2+Bx+C$). It was observed that high shear flow rate increased the 'A' value as the shear force acting on bacterium increased. Shorter bacterium turned more tightly into the flow as they swim faster and experience less drag force. The result obtained in this study might be relevant in studying the fate and transport of bacterium under low shear flow environment such as irrigation pipe, water distribution system, and urethral catheter.

본 연구의 목적은 낮은 전단흐름조건에서 편모 운동성이 박테리아의 거동 특성에 미치는 영향을 파악하는데 있다. 대다수의 미생물은 편모를 이용하여 수용액 내에서 운동할 수 있는 능력을 가지고 있으며, 이러한 운동성은 수계나 수처리 시스템에서 미생물의 거동에 있어서 중요한 역할을 한다. 그러나 현재까지 병원성 미생물의 이동 현상과 관련된 연구에서 편모에 의한 운동성은 거의 고려되지 않고 있는 실정이다. 본 연구에서는 미세유체장치를 이용하여 전단흐름이 낮은 조건에서 E. coli의 거동 특성을 파악하고자 하였다. 실험을 통하여 유속이 작은 경우에 E. coli는 포물선의 형태의 궤적들을 그리며 이동하는 것을 알 수 있었으며, 벽면 근처에서는 상류로 헤엄쳐 올라간다는 것을 파악하였다. 또한 유속과 종횡비(aspect ratio)에 따른 궤적의 변화를 분석하였는데, 유속이 작을수록 포물선 형태의 궤적을 그리게 되며, 길이가 짧을수록 보다 작은 회전 반경을 그리며 운동하는 것을 관찰할 수 있었다.

Keywords

References

  1. Berg, H. C. and Brown, D. A., "Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking," Nature, 239 (5374), 500-504(1972). https://doi.org/10.1038/239500a0
  2. Macnab, R. M., "Bacterial flagella rotating in bundles - study in helica geometry," Proc. Natl. Acad. Sci., 74(1), 221-225(1977). https://doi.org/10.1073/pnas.74.1.221
  3. Torre, J. G. and Bloomfield, V. A., "Hydrodynamic theory of swimming of flagellated microorganisms," Biophys. J., 20(1), 49-67(1977). https://doi.org/10.1016/S0006-3495(77)85536-7
  4. Johnson, R. E. and Brokaw, C. J., "Flagellar hydrodynamics - comparison between resistive-force theory and slenderbody theory," Biophys. J., 25(1), 113-127(1979). https://doi.org/10.1016/S0006-3495(79)85281-9
  5. Goto, T., Nakata, K., Baba, K., Nishimura, M. and Magariyama, Y., "A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary," Biophys. J., 89(6), 3771-3779(2005). https://doi.org/10.1529/biophysj.105.067553
  6. Lawrence, J. R. and Caldwell, D. E., "Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments," Microb. Ecol., 14(1), 15-27 (1987). https://doi.org/10.1007/BF02011567
  7. Hill, J., Kalkanci, O., McMurry, J. L. and Koser, H., "Hydrodynamic Surface Interactions Enable Escherichia coli to Seek Efficient Routes to Swim Upstream," Physical Review Letters, 98(6), 68-101(2007).
  8. Lauga, E., DiLuzio, W. R., Whitesides, G. M. and Stone, H. A., "Swimming in Circles: Motion of Bacteria near Solid Boundaries," Biophys. J., 90(2), 400-412(2006). https://doi.org/10.1529/biophysj.105.069401
  9. Feng, Z. G. and Michaelides, E. E., "Fluid-particle interactions and resuspension in simple shear flow," J. Hydraul. Eng.-ASCE, 129(12), 985-994(2003). https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(985)
  10. Chattopadhyay, S., Moldovan, R., Yeung, C. and Wu, X. L., "Swimming efficiency of bacterium Escherichia coli," Proc. Natl. Acad. Sci., 103(37), 13712-13717(2006). https://doi.org/10.1073/pnas.0602043103
  11. Happel, J. and Brenner, H., "Low Reynolds number hydrodynamics: with special applications to particulate media," Kluwer Academic Publisher(1991).
  12. Magariyama, Y., Sugiyama, S., Muramoto, K., Kawagishi, I., Imae, Y. and Kudo, S., "Simultaneous measurement of bacterial flagellar rotation rate and swimming speed," Biophys. J., 69(5), 2154-2162(1995). https://doi.org/10.1016/S0006-3495(95)80089-5
  13. Darnton, N. C., Turner, L., Rojevsky, S., and Berg, H. C., "On torque and tumbling in swimming Escherichia coli," J. Bacteriol., 189(5), 1756-1764(2007). https://doi.org/10.1128/JB.01501-06
  14. White, F. M., "Viscous Fluid Flow," McGraw-Hill Inc(1974).
  15. Mitchell, J. G., Pearson, L., Dillon, S. and Kantalis, K., "Natural assemblages of marine-bacteria exhibiting high-speed motility and large accelerations," Appl. Environ. Microbiol., 61(12), 4436-4440(1995).
  16. Maeda, K., Imae, Y., Shioi, J. I. and Oosawa, F., "Effect of temperature on motility and chemotaxis of Escherichia coli," J. Bacteriol., 127(3), 1039-1046(1976).
  17. Berg, H. C. and Turner, L., "Chemotaxis of bacteira in glasscapillary arrays," Biophys. J., 58(4), 919-930(1990). https://doi.org/10.1016/S0006-3495(90)82436-X
  18. Frymier, P. D., Ford, R. M., Berg, H. C. and Cummings, P. T., "Three-dimensional tracking of motile bacteria near a solid planar surface," Proc. Natl. Acad. Sci., 92(13), 6195-6199(1995). https://doi.org/10.1073/pnas.92.13.6195
  19. Li, G. L., Tam, L. K. and Tang, J. X., "Amplified effect of Brownian motion in bacterial near-surface swimming," Proc. Natl. Acad. Sci., 105(47), 18355-18359(2008). https://doi.org/10.1073/pnas.0807305105