DOI QR코드

DOI QR Code

Effect of Joint Aperture Variation on Hydraulic Behavior of the 2-D DFN System

절리간극의 변화가 이차원 DFN 시스템의 수리적 특성에 미치는 영향

  • Received : 2016.07.28
  • Accepted : 2016.08.22
  • Published : 2016.08.31

Abstract

A computer program code was developed to estimate hydraulic behavior of the 2-D connected pipe network system, and implemented to evaluate the effect of joint aperture on hydraulic parameters of fractured rock masses through numerical experiments. A total of 216 stochastic 2-D DFN(discrete fracture network) blocks of $20m{\times}20m$ were prepared using two joint sets with fixed input parameters of joint orientation, frequency and size distribution. Two different cases of joint aperture variation are considered in this study. The hydraulic parameters were estimated for generated 2-D DFN blocks. The hydraulic anisotropy and the chance for equivalent continuum behavior of the DFN system were found to depend on the variability of joint aperture.

본 연구는 절리의 수리간극의 변화가 절리암반의 수리상수에 미치는 영향을 평가하기 위하여 등가유로관 연결구조에 기반을 둔 이차원 DFN(discrete fracture network) 유체유동 해석 프로그램 코드를 개발하고 수리간극 변화를 고려한 수치실험을 수행하였다. 수치실험에 사용된 이차원 DFN 시스템은 두 절리군을 사용하여 절리의 방향성, 빈도 및 길이분포를 고정하고 절리의 수리간극을 절리군별로 서로 다른 일정한 값을 갖는 경우와 수리간극이 확률분포 특성을 갖는 경우를 고려하였다. 추계론적으로 생성한 총 216개의 $20m{\times}20m$ DFN 블록에 대하여 블록수리상수가 산정되었다. 수리간극의 변동성은 이차원 DFN 시스템의 이방성 및 등가연속체 취급 가능성에 유의미한 영향을 미치는 것으로 평가되었다.

Keywords

References

  1. Bang, S., S. Jeon and J. Choe, 2003, Determination of equivalent hydraulic conductivity of rock mass using three-dimensional discontinuity network, Tunnel & Underground Space (J. of Korean Society for Rock Mech.), 13, 52-63.
  2. Bang, S., S. Jeon and S. Kwon, 2012, Modeling the hydraulic characteristics of a fractured rock mass with correlated fracture length and aperture: application in the underground research tunnel at KAERI, Nuclear Engineering and Technology, 44, 639-652. https://doi.org/10.5516/NET.02.2011.026
  3. Han, J. and J. Um, 2015, Characteristics of block hydraulic conductivity of 2-D DFN system according to block size and fracture geometry, Tunnel & Underground Space (J. of Korean Society for Rock Mech.), 25, 450-461.
  4. Han, J. and J. Um, 2016, Effect of joint orientation distribution on hydraulic behavior of the 2-D DFN system, Economic and Environmental Geology, 49, 31-41. https://doi.org/10.9719/EEG.2016.49.1.31
  5. Hakami, E. and E. Larsson, 1996, Aperture measurements and flow experiments on a single natural fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33, 395-404. https://doi.org/10.1016/0148-9062(95)00070-4
  6. Moreno, L., I. Neretnieks, and T. Eriksen, 1985, Analysis of some laboratory tracer runs in natural fissures, Water Resour. Res. 21, 951-958. https://doi.org/10.1029/WR021i007p00951
  7. Park, J.S., D.W. Ryu, C.H. Ryu and C.I. Lee, 2007, Groundwater flow analysis around hydraulic excavation damaged zone, Tunnel & Underground Space (J. of Korean Society for Rock Mech.), 17, 109-118.
  8. Priest, S.D., 1993, Discontinuity analysis for rock engineering, Chapman & Hall, London, 473p.
  9. Raven, K.G., K.S. Norvakowski and P.A. Lapcevic, 1988, Interpretation of field tracer tests on a single fracture using a transient solute storage model, Water Resour. Res., 24, 2019-2032. https://doi.org/10.1029/WR024i012p02019
  10. Shapiro, A.M. and J.R. Nicholas, 1989, Assessing the validity of the channel model of fracture aperture under field conditions, Water Resour. Res. 25, 817-828. https://doi.org/10.1029/WR025i005p00817
  11. Silliman, S.E., 1989, An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture, Water Resour. Res., 25 2275-2283. https://doi.org/10.1029/WR025i010p02275
  12. Snow, D.T., 1970, The frequency and apertures of fractures in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 7, 23-40. https://doi.org/10.1016/0148-9062(70)90025-2
  13. Stratford, R.G., A.W. Herbert and C.P. Jackson, 1990, A parameter study of the influence of aperture variation on fracture flow and the consequences in a fracture network. In: Barton, N., Stephansson, O. (Eds.), Rock Joints. Balkema, Rotterdam, 413-422.
  14. Tsang, Y.W. and C.F. Tsang, 1987, Cannel model of flow through fractured media, Water Resour. Res., 23, 467-480. https://doi.org/10.1029/WR023i003p00467
  15. Yoon, Y.K., 2010, Effects of GSI and joint orientation on the change of hydraulic conductivity, Tunnel & Underground Space (J. of Korean Society for Rock Mech.), 20, 225-232.