• Title/Summary/Keyword: distribution of faults

Search Result 364, Processing Time 0.022 seconds

A Study on Constructing the Prediction System Using Data Mining Techniques to Find Medium-Voltage Customers Causing Distribution Line Faults (특별고압 수전설비 관리에 데이터 마이닝 기법을 적용한 파급고장 발생가능고객 예측시스템 구현 연구)

  • Bae, Sung-Hwan;Kim, Ja-Hee;Lim, Han-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2453-2461
    • /
    • 2009
  • Faults caused by medium-voltage customers have been increased and enlarged their portion in total distribution faults even though we have done many efforts. In the previous paper, we suggested the fault prediction model and fault prevention method for these distribution line faults. However we can't directly apply this prediction model in the field. Because we don't have an useful program to predict those customers causing distribution line faults. This paper presents the construction method of data warehouse in ERP system and the program to find customers who cause distribution line faults in medium-voltage customer's electric facility management applying data mining techniques. We expect that this data warehouse and prediction program can effectively reduce faults resulted from medium-voltage customer facility.

A Study on the Estimating Locations of Faults on Distribution Power Systems (배전계통 고장위치 검출방법에 관한 연구)

  • Kim Mi-Young;Oh Yong-Taek;Rho Dae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.670-677
    • /
    • 2004
  • The Conventional approach for estimating the locations of transmission line shunt faults has been to measure the apparent impedance to the fault from a line terminal and to convert the reactive component of the impedance to line length. But, these methods do not adequately address the problems associated with the fault location on distribution systems. This thesis presents a technique that estimates the location of shunt fault on a radial distribution system that has several single and multiphase laterals. Tapped loads and non-homogenity of the distribution system are take into account. The developed technique, which can handle shunt faults was tested to evaluate its suitability. Results from computer simulation of faults on a model of a 25KV distribution lines like real system are presented. The results approved that the proposed technique works well for estimating the locations of the distribution line shunt faults.

Discrimination of Arcing Faults from Normal Distribution Disturbances by Wave form Distortion Analysis

  • Kim, C. J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.52-57
    • /
    • 1996
  • Detection of arcing high impedance faults has been a perplexing in the power distribution protection. Transient analysis of distribution disturbances for fault discrimination from other normal events is important for a secure protection of the power system. A simple parameter of wave form distortion quantification is used to analyze the behaviors of arcing faults and normal distribution disturbances. Theoretical perspectives of the transients were studied and actual disturbances were examined. From this investigation, a discrimination guideline based on the revised crest factor is developed. The discrimination method has a high potential to enhance the reliability and security for the distribution system protection.

  • PDF

The Study of Multi-Circuit Breaker Coordination in the Underground Distribution Line (지중배전선로의 다회로차단기 운영방안 연구)

  • Jo, Nam-Hun;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.143-151
    • /
    • 2000
  • Electric power distribution feeders are susceptible to faults caused by a variety of situations such as adverse weather conditions, tree contacts, equipment failure, accidents, etc. Distribution circuit faults result in a number of problems related to the reliability of service and customer power quality. In the distribution line, the permanent interruption of customer service resulting from a blown fuse or a recloser lockout was the only factor which was used to determine service reliability. On underground distribution line, the serving of cables by earth-moving equipment is a prevalent cause of faults and the most cable faults quickly develop into bolted current. we introduce th multi-circuit breaker coordination methods in the Underground Distribution Line.

  • PDF

Leakage Currents Flowing through Lightning Surge Arresters under Various Fault Conditions in Receiving and Distribution Power Systems (수배전계통의 여러 가지 고장조건에서 피뢰기에 흐르는 누설전류)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Kang, Sung-Man;Choi, Hwee-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.132-139
    • /
    • 2004
  • Unsymmetrical faults are classified into single line-to-ground faults, line-to-line faults, or double line-to-ground faults in receiving and distribution power systems. Many of overhead distribution-line faults are single line-to-ground faults, and lightning surge arresters are stressed by system frequency overvoltages due to unsymmetrical faults. In this work, the unsymmetrical faults in receiving and distribution systems were experimentally simulated, and the characteristics of total leakage current flowing through lightning surge arresters due to various unsymmetrical faults were investigated. As a result, a little variations of the leakage current flowing through Zinc oxide (ZnO) surge arresters in the range of $\pm$10[%] voltage regulations were observed. It could be concluded that the unsymmetrical faults have no effect on the long-term life performance of ZnO surge arresters in effective grounding systems. On the other hand, the magnitude of the leakage current flowing through ZnO surge arrester elements under single line-to-ground faults was more than 140 times as compared with that under normal operating voltages in ineffective grounding systems. But abnormal voltages caused by line-to-line faults and double line-to-ground faults have a little effect on total leakage current of ZnO surge arrester elements.

A study on Reliability Enhancement Method and the Prediction Model Construction of Medium-Voltage Customers Causing Distribution Line Fault Using Data Mining Techniques (데이터 마이닝 기법을 이용한 특별고압 파급고장 발생가능 고객 예측모델 구축 및 신뢰도 향상방안에 관한 연구)

  • Bae, Sung-Hwan;Kim, Ja-Hee;Hong, Jung-Sik;Lim, Han-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1869-1880
    • /
    • 2009
  • Distribution line fault has been reduced gradually by the efforts on improving the quality of electrical materials and distribution system maintenance. However faults caused by medium voltage customers have been increased gradually even though we have done many efforts. The problem is that we don't know which customer will cause the fault. This paper presents the concept to find these customers using data mining techniques, which is based on accumulated fault records of medium voltage customers in the past. It also suggests the prediction model construction of medium voltage customers causing distribution line fault and methods to enhance the reliability of distribution system. We expect that we can effectively reduce faults resulted from medium voltage customers, which is 30% of total faults.

The Standard for Installation of Automated Distribution Switch-gear in Multi-Line Faults (다중선로 고장을 고려한 배전자동화용 개폐기 설치기준)

  • Lee, Jung-Ho;Ha, Bok-Nam;Cho, Nam-Hun;Lim, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1079-1081
    • /
    • 1999
  • This paper presents the standard for dividing/tieing the distribution lines and installing optimally the automated distribution switch-gear in multi-line faults. Also this paper recommends the distribution system design in consideration of the live load transfer of the concentrated load in the last load-side. This recommendation will be useful for designing the distribution network, developing the feeder automation software and operating the distribution automation system.

  • PDF

A Syudy on the Detection of High Impedance Faults using Wavelet Transforms and Neural Network (웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구)

  • 홍대승;배영철;전상영;임화영
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.459-462
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating. so it is well hon that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System (배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구)

  • Kim, Kyung-Chul;You, Chang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

Development of RCD Auxiliary Trip Device by using High Precision Current Sensor (고정밀 전류센서를 이용한 RCD 보조트립 장치 개발)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1532-1537
    • /
    • 2009
  • Nowadays the diversity and large-capacity of electric appliances are strong effect on electrical fires augment in an alarming way. But, as the inactive response characteristics of the existing RCD (Residual Current protective Device) used on low voltage power distribution lines, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore this paper is confirmed the unreliability of the existing RCD by electrical faults simulation and is proposed a auxiliary trip device of RCD by using a high precision current sensor (namely, reed switch) for the prevention of electrical disasters in low voltage power distribution lines caused by overload or electric short circuit faults. The sensitive reed switch in the proposed ATD (auxiliary trip device) exactly detects the increased magnetic flux with the overload or the short current caused by a number of electrical faults, and then rapidly cuts off the existing RCD. The proposed auxiliary trip device of RCD is confirmed the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker through various operation performance analysis. The proposed ATD can also prevent electrical disaster, like as electrical fires, which resulted from the malfunction and inactive response characteristics of the existing RCD.