• Title/Summary/Keyword: distribution network

Search Result 3,258, Processing Time 0.034 seconds

A Study on the Marketing Performance Using Social Media -Comparison between Portal Advertisement, Blog, and SNS Channel Characteristics and Performance- (소셜미디어 마케팅 성과에 관한 연구 -포탈 광고, 블로그, SNS 채널의 특징과 성과 비교를 중심으로-)

  • Chang, Yun-Hee
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.119-133
    • /
    • 2012
  • Recent rise of social media channel is changing social and economic paradigm and is being used as an effective communication in marketing. The following research analyzes the most employed social marketing tools such as portal advertisement, blogs, and SNS channels to effectively execute social media marketing from performance indicator and ICSI perspective, analyzes each channel's characteristics and results based on Korea distribution companies' case studies and suggests a framework to effectively use each channel. Portal site advertisements are the most effective channel to draw customers with new information and are thus linked to profit by corporations with excessive budget and workforce. Blogs target a specific range of customers providing quality information and knowledge thus improving a corporation's and its product's trustworthiness, spread the word by allowing customers to scrap the information, form social groups and synthesize ideas, events, new contents and social involvement with loyal customers. SNS channels allow customers to get involved in real time information and events, grow through network by the power of customers, react immediately to customers' needs, and execute real-time market and customer reports. Though national corporations currently rely heavily on portal site advertisements, insightful marketing professionals are showing financial results with blog and SNS. In the future, based on a precise understanding of each channel's benefits and expected results, and with a focus on flexibility, timeliness and integrated use of each channel, a portfolio of dynamic marketing as a maximizing strategy could be synthesized.

Tile, Slice, and Deblocking Filter Parallelization Method in HEVC (HEVC 복호기에서의 타일, 슬라이스, 디블록킹 필터 병렬화 방법)

  • Son, Sohee;Baek, Aram;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.484-495
    • /
    • 2017
  • The development of display devices and the increase of network transmission bandwidth bring demands for over 2K high resolution video such as panorama video, 4K ultra-high definition commercial broadcasting, and ultra-wide viewing video. To compress these image sequences with significant amount of data, High Efficiency Video Coding (HEVC) standard with the highest coding efficiency is a promising solution. HEVC, the latest video coding standard, provides high encoding efficiency using various advanced encoding tools, but it also requires significant amounts of computation complexity compared to previous coding standards. In particular, the complexity of HEVC decoding process is a imposing challenges on real-time playback of ultra-high resolution video. To accelerate the HEVC decoding process for ultra high resolution video, this paper introduces a data-level parallel video decoding method using slice and/or tile supported by HEVC. Moreover, deblocking filter process is further parallelized. The proposed method distributes independent decoding operations of each tile and/or each slice to multiple threads as well as deblocking filter operations. The experimental results show that the proposed method facilitates executions up to 2.0 times faster than the HEVC reference software for 4K videos.

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

An Hybrid Clustering Using Meta-Data Scheme in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 메타 데이터 구조를 이용한 하이브리드 클러스터링)

  • Nam, Do-Hyun;Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.313-320
    • /
    • 2008
  • The dynamic clustering technique has some problems regarding energy consumption. In the cluster configuration aspect the cluster structure must be modified every time the head nodes are re-selected resulting in high energy consumption. Also, there is excessive energy consumption when a cluster head node receives identical data from adjacent cluster sources nodes. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects duster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. Furthermore, the issue of redundant data occurring at the cluster head node is dealt with by broadcasting metadata of the initially received data to prevent reception by a sensor node with identical data. A simulation experiment was performed to verify the validity of the proposed approach. The results of the simulation experiments were compared with the performances of two of the must widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 29.3% and 21.2% more efficient than LEACH and HEED, respectively.

  • PDF

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

A Study on Effective Relations between China's Cancellation of the Export Rebate of VAT tax and Chinese Steel Export to Korea. (중국의 수출 증치세 환급 취소가 중국산 철강재의 대한국 수출에 미치는 영향)

  • Lee, Seoung Taek
    • International Commerce and Information Review
    • /
    • v.19 no.3
    • /
    • pp.83-105
    • /
    • 2017
  • I tried to analyze export relation of influence in Chinese H beam(common steel), Hot Rolled Steel(common steel), Plate(common steel) which could be influenced immediately by China's cancellation of the export rebate of value added tax in 2010 through the statistic methods such as cointegration, Granger causality, impulse response and variance decomposition. In the first period they mutually influenced each other in export to Korea but in the second period, this relation of influence was lessoned. Due to production expansion of Hot Rolled Steel(common steel), Plate(common steel) in Korea, the change of import trend, the market change of steel users' industries and China's expedient export of boron steel to Korea, mutual influence among these products was greatly declined. Ever since Hyundai Steel's production expansion involving blast furnace facilities, there is need for the industry to concentrate on developing new markets for its facilities' output in Korea. Therefore, Korea's steel industry desperately needs strength of de-jure standards such as unique quality standards and related certifications, efficient distribution management, as well as export promotion strategy through its global trading network to effectively address its structural supply-demand imbalances.

  • PDF

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

Estimation of Disease Code Accuracy of National Medical Insurance Data and the Related Factors (의료보험자료 상병기호의 정확도 추정 및 관련 특성 분석 -법정전염병을 중심으로-)

  • Shin, Eui-Chul;Park, Yong-Mun;Park, Yong-Gyu;Kim, Byung-Sung;Park, Ki-Dong;Meng, Kwang-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.471-480
    • /
    • 1998
  • This study was undertaken in order to estimate the accuracy of disease code of the Korean National Medical Insurance Data and disease the characteristics related to the accuracy. To accomplish these objectives, 2,431 cases coded as notifiable acute communicable diseases (NACD) were randomly selected from 1994 National Medical Insurance data file and family medicine specialists reviewed the medical records to confirm the diagnostic accuracy and investigate the related factors. Major findings obtained from this study are as follows : 1. The accuracy rate of disease code of NACD in National Medical Insurance data was very low, 10.1% (95% C.I. : 8.8-11.4). 2. The reasons of inaccuracy in disease code were 1) claiming process related administrative error by physician and non-physician personnel in medical institutions (41.0%), 2) input error of claims data by key punchers of National Medical Insurer (31.3%) and 3) diagnostic error by physicians (21.7%). 3. Characteristics significantly related with lowering the accuracy of disease code were location and level of the medical institutions in multiple logistic regression analysis. Medical institutions in Seoul showed lower accuracy than those in Kyonngi, and so did general hospitals, hospitals and clinics than tertiary hospitals. Physician related characteristics significantly lowering disease code accuracy of insurance data were sex, age group and specialty. Male physicians showed significantly lower accuracy than female physicians; thirties and fortieg age group also showed significantly lower accuracy than twenties, and so did general physicians and other specialists than internal medicine/pediatric specialists. This study strongly suggests that a series of policies like 1) establishment of peer review organization of National Medical Insurance data, 2) prompt nation-wide expansion of computerized claiming network of National Medical Insurance and 3) establishment and distribution of objective diagnostic criteria to physicians are necessary to set up a national disease surveillance system utilizing National Medical Insurance claims data.

  • PDF

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data (GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출)

  • Lee, Seoyoung;Choi, Myungje;Kim, Jhoon;Kim, Mijin;Lim, Hyunkwang
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.961-970
    • /
    • 2017
  • Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF