Browse > Article
http://dx.doi.org/10.7780/kjrs.2017.33.6.1.5

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data  

Lee, Seoyoung (Department of Atmospheric Sciences, Yonsei University)
Choi, Myungje (Department of Atmospheric Sciences, Yonsei University)
Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University)
Kim, Mijin (Department of Atmospheric Sciences, Yonsei University)
Lim, Hyunkwang (Department of Atmospheric Sciences, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.33, no.6_1, 2017 , pp. 961-970 More about this Journal
Abstract
Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.
Keywords
aerosol optical depth; high spatial resolution; GOCI; aerosol retrieval algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zanobetti, A. and J. Schwartz, 2009. The effect of fine and coarse particulate air pollution on mortality: a national analysis, Environmental Health Perspectives, 117(6): 898.   DOI
2 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, B. Holben, T. F. Eck, Z. Li, and C. H. Song, 2017. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmospheric Measurement Techniques Discussion, https://doi.org/10.5194/amt-2017-251, in review, 2017.   DOI
3 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, U. Jeong, W. Kim, H. Hong, B. N. Holben, T. F. Eck, C. H. Song, J.-H. Lim, and C.-K. Song, 2016. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmospheric Measurement Techniques, 9(3): 1377-1398.   DOI
4 Cox, C. and W. Munk, 1954. Measurement of the roughness of the sea surface from photographs of the Sun's glitter, Journal of the Optical Society of America, 44(11): 838-850.   DOI
5 Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O'neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24): 31333-31349.   DOI
6 Garay, M. J., O. V. Kalashnikova, and M. A. Bull, 2017. Development and assessment of a higherspatial- resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data, Atmospheric Chemistry and Physics, 17(8): 5095.   DOI
7 Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, and T. Nakajima, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote sensing of environment, 66(1): 1-16.   DOI
8 Hsu, N. C., M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S. C. Tsay, 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315.   DOI
9 Hu, X., L. A. Waller, A. Lyapustin, Y. Wang, M. Z. Al- Hamdan, W. L. Crosson, M. G. Estes, S. M. Estes, D. A. Quattrochi, and S. J. Puttaswamy, 2014. Estimating ground-level PM 2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model, Remote sensing of environment, 140: 220-232.   DOI
10 Ishida, H., T. Y. Nakjima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011. Investigation of GOSAT TANSO-CAI cloud screening ability through an intersatellite comparison, Journal of Applied Meteorology and Climatology, 50(7): 1571-1586.   DOI
11 Kim, J., J. Lee, H. C. Lee, A. Higurashi, T. Takemura, and C. H. Song, 2007. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign, Journal of Geophysical Research: Atmospheres, 112(D22).
12 Kim, J., J. M. Yoon, M. Ahn, B. Sohn, and H. Lim, 2008. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R, International Journal of Remote Sensing, 29(21): 6181-6192.   DOI
13 Lee, J., J. Kim, P. Yang, and N. C. Hsu, 2012. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database, Atmospheric Chemistry and Physics, 12(15): 7087-7102.   DOI
14 Kim, M., J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T. F. Eck, J. H. Lim, C. K. Song, and S. Lee, 2016. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS), Atmospheric Chemistry and Physics, 16(3): 1789-1808.   DOI
15 Kim, M., J. Kim, M. S. Wong, J. Yoon, J. Lee, D. Wu, P. Chan, J. E. Nichol, C.-Y. Chung, and M.-L. Ou, 2014. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction, Remote sensing of environment, 142: 176-187.   DOI
16 Lee, J., J. Kim, C. H. Song, J.-H. Ryu, Y.-H. Ahn, and C. Song, 2010. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sensing of Environment, 114(5): 1077-1088.   DOI
17 Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6(11): 2989.   DOI
18 Li, C., A.-H. Lau, J. Mao, and D. A. Chu, 2005. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong, IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2650-2658.   DOI
19 Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J. Reid, 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, Journal of Geophysical Research: Atmospheres, 116(D3).
20 Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, and K. G. Andrews, 2013. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010, The Lancet, 380(9859): 2224-2260.   DOI
21 Remer, L. A., Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, and R. G. Kleidman, 2005. The MODIS aerosol algorithm, products, and validation, Journal of the atmospheric sciences, 62(4): 947-973.   DOI
22 Remer, L. A., S. Mattoo, R. C. Levy, and L. A. Munchak, 2013. MODIS 3 km aerosol product: algorithm and global perspective, Atmospheric Measurement Techniques, 6(7): 1829.   DOI
23 Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex, and B. M. Midgley, 2013. IPCC, 2013: Climate Change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, NY, USA.
24 Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt, 2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, Journal of Geophysical Research: Atmospheres, 112(D24).
25 Wang, K., R. E. Dickinson, and S. Liang, 2009. Clear sky visibility has decreased over land globally from 1973 to 2007, Science, 323(5920): 1468-1470.   DOI