DOI QR코드

DOI QR Code

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide

기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나

  • Lee, Hai-Young (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2015.02.05
  • Accepted : 2015.03.11
  • Published : 2015.03.31

Abstract

An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

저손실, 전자기 완전차폐, 고전력 특성을 갖는 기판집적 도파관(SIW)을 이용하여 X-band $8{\times}16$ 이중편파 능동 위상배열안테나 시스템을 구현하였다. 16-way SIW 전력분배 네트워크의 측정된 순수 삽입손실(0.65 dB)은 마이크로스트립 경우보다 1 dB 감소하였으며, SIW 부배열($1{\times}16$) 안테나 소자의 측정된 방사효율(73 %)은 약 2배(3 dB) 향상되었다. 이러한 SIW를 이용한 분배손실과 방사효율의 상당한 개선은 능동 위상 배열안테나 시스템에서 고전력 증폭기의 최대출력(P1 dB)을 저감하고, 총 전력소모를 약 30 % 절감할 것이다. SIW 기반으로 제작된 X-band $8{\times}16$ 이중편파 능동 위상 배열안테나 시스템을 이론적인 제어벡터만을 생성하여 0도, 5도, 9도, 18도의 정밀한(최대편차 2도) 빔 조향을 측정하였으며, 열주기/진공 시험에서 우주환경 적합성을 확인하였다. 고효율 SIW 배열안테나 시스템은 고성능 레이더는 물론 차세대 무선통신(5G)을 위한 Massive MIMO와 다양한 밀리미터파 통신시스템(60 GHz WPAN, 77 GHz 자동차 레이더, 초고속 디지털 전송시스템 등)에 매우 유용할 것으로 기대한다.

Keywords

References

  1. H. H. Meinel, "Commercial application of millimeter waves-history, present status and future trends", IEEE Trans Microw. Theory Tech., vol. 44, no. 7, pp. 1639-1653, Jul. 1995.
  2. P. F. Goldsmith, C. T. Hsieh, and G. R. Huguenin, "Focal plane imaging systems for millimeter wavelengths", IEEE Trans Microw. Theory Tech., vol. 41, no. 10, pp. 1664-1675, Oct. 1993. https://doi.org/10.1109/22.247910
  3. R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip", IEEE Trans. Microw. Theory Tech., vol. MTT-16, no. 6, pp. 342-350, Jun. 1968.
  4. L. Lewin, "Spurious radiation from microstrip", Proc. IEEE, vol. 125, no. 7, pp. 633-642, Jul. 1978.
  5. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed., 1996.
  6. D. Deslandes, K. Wu, "Integrated microstrip and rectangular waveguide in planar form", IEEE Mirow. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001. https://doi.org/10.1109/7260.914305
  7. Feng Xu, Ke Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide", IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 66-72, Jan. 2005. https://doi.org/10.1109/TMTT.2004.839303
  8. Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide", IEEE Microw. Wireless Compon. Lett., vol. 12, no. 9, pp. 333-335, Sep. 2002. https://doi.org/10.1109/LMWC.2002.803188
  9. D. Deslandes, K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide", IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2516-2526, Jun. 2006. https://doi.org/10.1109/TMTT.2006.875807
  10. X. C. Zhu, W. Hong, K. Wu, K. D. Wang, L. S. Li, Z. C. Hao, H. J. Tang, and J. X. Chen, "Accurate characterization of attenuation constants of substrate integrated waveguide using resonator method", IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 676-679, Dec. 2013.
  11. Y. J. Cheng, K. Wu, and W. Hong, "Power handling capability of substrate integrated waveguide interconnects and related transmission line systems", IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 900-909, Nov. 2008. https://doi.org/10.1109/TADVP.2008.927814
  12. D. Deslandes, "Design equations for tapered microstrip-to-substrate integrated waveguide transitions", in IEEE MTT-S Int. Microwave Symp. Dig., May 2010, pp. 704-707.
  13. S. Lee, S. Jung, and H. -Y. Lee, "Ultra-wideband CPWto-substrate integrated waveguide transition using an elevated-CPW section", IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 746-748, Nov. 2008. https://doi.org/10.1109/LMWC.2008.2005230
  14. D. Deslandes, K. Wu, "Integrated transition of coplanar to rectangular waveguides", in Int. Microw. Symp. Dig., pp. 619-622, vol. 2, May 2001.
  15. A. Patrovsky, M. Daigle, and K. Wu, "Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates", in Proc. IEEE Microw. Conf., pp. 138-141, Oct. 2007.
  16. Y. Ding, Ke Wu, "Substrate integrated waveguide-to-microstrip transition in multilayer substrate", IEEE Trans Microw. Theory Tech., vol. 55, no. 12, pp. 2839-2844, Dec. 2007. https://doi.org/10.1109/TMTT.2007.909878
  17. D. Cho, H. -Y. Lee, "A new broadband microstrip-to-SIW transition using parallel HMSIW", Journal of Electromagnetic Engineering and Science, vol. 12, no. 2, pp. 171-175, Jun. 2012. https://doi.org/10.5515/JKIEES.2012.12.2.171
  18. M. Bozzi, A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas", IET Microw. Antennas Propag., vol. 5, no. 8, pp. 909-920, Aug. 2011. https://doi.org/10.1049/iet-map.2010.0463
  19. Y. D. Dong, T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters", IEEE Trans Microw. Theory Tech., vol. 57, no. 9, pp. 2211-2223, Sep. 2009. https://doi.org/10.1109/TMTT.2009.2027156
  20. 임명규, 변진도, 이해영, "기판 집적 도파관을 이용한 아날로그 페라이트 위상 천이기", 한국전자파학회논문지, 22(4), pp. 470-480, 2011년 4월. https://doi.org/10.5515/KJKIEES.2011.22.4.470
  21. 황석민, 변진도, 이해영, "출력 단자 간의 격리 특성이 향상된 HMSIW 평형 여파기", 한국전자파학회논문지, 22(2), pp. 173-181, 2011년 2월. https://doi.org/10.5515/KJKIEES.2011.22.2.173
  22. 김경민, 변진도, 정경영, 이해영, "광대역 격리 특성을 갖는 기판 집적 도파관 전력 분배기", 한국전자파학회논문지, 20(8), pp. 680-687, 2009년 8월. https://doi.org/10.5515/KJKIEES.2009.20.8.680
  23. K. Kim, J. Byun, and H. -Y. Lee, "Substrate integraged waveguide Wilkinson power divider with improved isolation performance", Progress in Electromagnetics Research Letters, vol. 19, pp. 41-48, 2010.
  24. D. Eom, J. Byun, and H. -Y. Lee, "Multilayer substrate integrated waveguide four-way out-of-phase power divider", IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3469-3476, Dec. 2009. https://doi.org/10.1109/TMTT.2009.2034311
  25. D. Eom, J. Byun, and H. -Y. Lee, "Multi-layer four-way out-of-phase power divider for substrate integrated waveguide applications", in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, pp. 477-480, Jun. 2009.
  26. Z. C. Hao, W. Hong, J. X. Chen, H. X. Zhou, and K. Wu, "Single-layer substrate integrated waveguide directional couplers", IProc. Inst. Electr. Eng., vol. 153, no. 5, pp. 426-431, Oct. 2006.
  27. M. E. Morote, B. Fuchs, J. F. Zurcher, and J. R. Mosig, "A printed transition for matching improvement of SIW horn antennas", IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1923-1930, Apr. 2013. https://doi.org/10.1109/TAP.2012.2231923
  28. F. Giuppi, A. Georgiadis, A. Collado, and M. Bozzi, "Tunable SIW cavity backed active antenna oscillator", Electron. Lett., vol. 46, no. 15, pp. 1053-1055, 2010. https://doi.org/10.1049/el.2010.0861
  29. D. S. Eom, H. -Y. Lee, "An X-band substrate integrated waveguide attenuator", Microwave Opt. Technol. Lett., vol. 56, no. 10, pp. 2446-2449, Oct. 2014. https://doi.org/10.1002/mop.28607
  30. M. Abdolhamidi, M. Shahabadi, "X-band substrate Iitegrated waveguide amplifier", EEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 815-817, Dec. 2008. https://doi.org/10.1109/LMWC.2008.2007711
  31. H. Sanmin, L. Wang, T. G. Lim, B. Zhang, J. Shi, and X. Yuan, "TSV technology for millimeter-wave and terahertz design and application", IEEE Trans. Compon. Packag. Technol., vol. 1, no. 2, pp. 260-267, Feb. 2011. https://doi.org/10.1109/TCPMT.2010.2099731
  32. H. Sanming, X. Yong-Zhong, Z. Bo, W. Lei, L. Teck-Guan, J. Minkyu, and M. Madihian, "A SiGe BiCMOS transmitter/receiver chipset with on-chip SIW antennas for terahertz applications", IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2654-2664, Nov. 2012. https://doi.org/10.1109/JSSC.2012.2211658
  33. Z. Li, K. Wu, "24 Ghz Frequency modulation continuous-wave radar front-end system on substrate", IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 278-285, Feb. 2008. https://doi.org/10.1109/TMTT.2007.914363
  34. Y. J. Cheng, P. Chen, W. Hong, T. Djerafi, and K. Wu, "Substrate-integrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems", IEEE Antenna Propag. Mag., vol. 53, no. 6, pp. 18-30, Dec. 2011. https://doi.org/10.1109/MAP.2011.6157710
  35. L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. Cui, "Simulation and experiment on SIW slot array antennas", IEEE Microw. Wireless Compon. Lett., vol. 14, no. 09, pp. 446-448, Sep. 2004. https://doi.org/10.1109/LMWC.2004.832081
  36. J. F. Xu, Z. N. Chen, X. Qing, and W. Hong, "Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 826-832 2011. https://doi.org/10.1109/TAP.2010.2103018
  37. G. Q. Luo, W. Hong, Z. -C. Hao, B. Liu, W. D. Li, J. X. Chen, H. X. Zhou, and K. Wu, "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology", IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 4035-4043, Dec. 2005. https://doi.org/10.1109/TAP.2005.860010
  38. P. Chen, Z. Kuai, J. Xu, H. Wang, J. Chen, H. Tang, J. Zhou, and K. Wu, "A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications", IEEE Trans. Antennas Propag., pp. 1813-1821, vol. 57, no. 6, 2009. https://doi.org/10.1109/TAP.2009.2019868
  39. Q. H. Lai, W. Hong, Z. Q. Kuai, Y. S. Zhang, and K. Wu, "Half-mode substrate integrated waveguide transverse slot array antennas", IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 1064-1072, Apr. 2009. https://doi.org/10.1109/TAP.2009.2015799
  40. L. Wang, Y. J. Cheng, D. Ma, and C. X. Weng, "Wideband and dual-band high-gain substrate integrated antenna array for E-band multi-gigahertz capacity wireless communication systems", IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4602-4611, Sep. 2014. https://doi.org/10.1109/TAP.2014.2334357
  41. Y. J. Cheng, H. Xu, D. Ma, J. Wu, L. Wang, and Y. Fan, "Millimeter-wave shaped-beam substrate inItegrated conformal array antenna", IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4558-4566, Sep. 2013. https://doi.org/10.1109/TAP.2013.2267202
  42. 조대근, 변진도, 이해영, "이중 편파 위상 배열 시스템을 위한 기판 집적 슬롯 배열 안테나", 한국전자파학회논문지, 22(2), pp. 228-235, 2011년 2월. https://doi.org/10.5515/KJKIEES.2011.22.2.228
  43. Z. Wang, X. Liang, R. Jin, and J. Geng, "A novel SIW horn antenna with high gain and high efficiency", IEEE AP-S Int. Symp. Dig., pp. 1-4, Memphis, Jul. 2014.
  44. N. Ghassemi, K. Wu, "Planar high-gain dielectric-loaded antipodal linearly tapered slot antenna for E- and W-band gigabyte point-to-point wireless services", IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1747-1755, Apr. 2013. https://doi.org/10.1109/TAP.2012.2232269
  45. N. Ghassemi, K. Wu, S. Xlaude, and X. Zhang, "Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process", IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1648-1653, Mar. 2012. https://doi.org/10.1109/TAP.2011.2180346
  46. J. Byun, H. -Y. Lee, B. M. Lee, J. H. Bang, and B. C. Kang, "Compact ridged substrate integrated waveguide cavity backed slot antenna", Proc. 2013 IEEE AP-S/URSI Symp., Orlando, FL., Jul. 2013.
  47. K. Kim, J. Byun, and H. -Y. Lee, "Substrate integrate waveguide quasi-Yagi antenna using SIW-to-CPS transition for low mutual coupling", IEEE AP-S Int. Symp. Dig., pp. 1-4, Toronto, Jul. 2010.
  48. A. Ali, N. Fonseca, F. Coccetti, and H. Aubert, "Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications", IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 503-512, 2011. https://doi.org/10.1109/TAP.2010.2093499
  49. T. Djerafi, K. Wu, "A low-cost wideband 77-GHz planar Butler matrix in SIW technology", IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4949-4954, 2012. https://doi.org/10.1109/TAP.2012.2207309
  50. T. Djerafi, N. J. G. Fonseca, and K. Wu, "Broadband substrate integrated waveguide 4$\times$4 Nolen matrix based on coupler delay compensation", IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1740-1745, 2011. https://doi.org/10.1109/TMTT.2011.2142320
  51. 김현, 나형기, 전민현, "능동 위상 배열 레이다의 개발 동향", 한국전자파학회지, 25(2), pp. 39-49, 2014년 3월.
  52. F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays", IEEE Signal Process Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013. https://doi.org/10.1109/MSP.2011.2178495
  53. E. Larsson, F. Tufvesson, O. Edfors, and T. Marzetta, "Massive MIMO for next generation wireless systems", IEEE Commun. Mag., vol. 52, no. 2, pp.186-195, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736761
  54. W. Hong, K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mmwave antenna systems for 5G cellular devices", IEEE Commun. Mag., vol. 52, no. 2, pp. 63-69. Feb. 2014. https://doi.org/10.1109/MCOM.2014.6894454
  55. W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results", IEEE Commun. Mag., vol. 52, no. 2, pp. 106-13. Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736750
  56. X. Artiga, B. Devillers, and J. Perruisseau-Carrier, "Mutual coupling effects in multi-user massive MIMO base stations", Proc. 2012 IEEE AP-S/URSI Symp., Chicago, IL, Jul. 2012.
  57. F. H. Fan, K. Wu, W. Hong, H. Liang, and C. Xiao-Ping, "Low-cost 60-GHz smart antenna receiver subsystem based on substrate integrated waveguide technology", IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 1156-1165, Apr. 2012. https://doi.org/10.1109/TMTT.2012.2184127
  58. T. Djerafi, K. Wu, "A low-cost wideband 77-GHz planar Butler matrix in SIW technology", IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4949-4954, Oct. 2012. https://doi.org/10.1109/TAP.2012.2207309
  59. A. Suntives, R. Abhari, "Ultra-high-speed multichannel data transmission using hybrid substrate integrated waveguides", IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1973-1984, Aug. 2008. https://doi.org/10.1109/TMTT.2008.927409
  60. B. Bensalem, J. T. Aberle, "A new high-speed memory interconnect architecture using microwave interconnects and multicarrier signaling", IEEE Trans. Compon. Packag. Technol., vol. 4, no. 2, pp. 332-340. Feb. 2014. https://doi.org/10.1109/TCPMT.2013.2283234
  61. S. Lemey, F. Declercq, and H. Rogier, "Dual-band substrate integrated waveguide textile antenna with integrated solar harvester", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 269-272, 2014. https://doi.org/10.1109/LAWP.2014.2303573
  62. G. Gentile, R. Dekker, P. Graaf, M. Spirito, M. J. Pelk, L. C. N. de Vreede, and B. R. Salmassi, "Silicon filled integrated waveguides", IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 536-538, Oct. 2010. https://doi.org/10.1109/LMWC.2010.2063420
  63. B. C. Wadell, Transmission Line Design Handbook, Artech House, pp. 99, 1991.
  64. Q. Lai, C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the halfmode substrate integrated waveguide", IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1996-2004, Aug. 2009. https://doi.org/10.1109/TMTT.2009.2025429
  65. R. S. Elliott, "An improved design procedure for small arrays of shunt slots", IEEE Trans. Antennas Propag., vol. AP-31, no. 1, pp. 48-53, Jan. 1983.
  66. R. S. Elliott, W. R. O'Loughlin, "The design of slot arrays including internal mutual coupling", IEEE Trans. Antennas Propag., vol. AP-34, no. 9, pp. 1149-1154, Sep. 1986.
  67. H. C. Lu, T. H. Chu, "Equivalent circuit of radiating longitudinal slots in substrate integrated waveguide", in Proc. IEEE Antennas Propagation Soc. Symp., vol. 3, Monterey, CA, pp. 2341-2344, Jun. 2004.
  68. F. Xu, W. Hong, P. Chen, and K. Wu, "Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas", IET Microw. Antennas Propag., vol. 3, pp. 790-797, 2009. https://doi.org/10.1049/iet-map.2008.0157
  69. A. Henderson, J. R. James, "Design of microstrip antenna feed transitions, Pt. I: Estimation of radiation loss and and design implications", Inst. Elec. Eng. J. MOA, pp. 19-25, Feb. 1981.
  70. A. Sabban, "A comprehensive study of losses in mmwave microstrip antenna arrays", in Proc. 27th Eur. Microwave Conf., Jerusalem, Israel, pp. 163-167. Sep. 1997.
  71. A. Margomenos, M. Micovic, A. Kurdoghlian, K. Shinohara, D. F. Brown, C. Butler, R. Bowen, M. Wetzel, C. McGuire, L. Milosavljevic, and D. H. Chow, "X band highly efficient GaN power amplifier utilizing built-in electroformed heat sinks for advanced thermal management", in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, Jun. 2013.
  72. J. S. Moon, H. Moyer, P. Macdonald, D. Wong, and D. Chow, "High efficiency X-band class-E GaN MMIC high-power amplifiers", IEEE Power Amplifiers for Wireless and Radio Applications (PAWR), pp. 9-12, Jan. 2012.
  73. S. Riendeau, C. Grenier, "RADARSAT-2 antenna", Proc. IEEE Aerosp. Conf., pp. 1-9, 2007.
  74. W. Pitz, D. Miller, "The TerraSAR-X satellite", IEEE Trans. Geosci. Remote Sens., vol. 48, no. 2, pp.615-622, Feb. 2010. https://doi.org/10.1109/TGRS.2009.2037432
  75. M. Bozzi, S. A. Winkler, and K. Wu, "Broadband and compact ridge substrate integrated waveguide", IET Microw. Antennas Propag., vol. 4, no. 11, pp. 1965-1973, Nov. 2010. https://doi.org/10.1049/iet-map.2009.0529
  76. Y. Ding, K. Wu, "A $4{\times}4$ ridged substrate integrated waveguide(RSIW) slot array antenna", IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 561-564, 2009. https://doi.org/10.1109/LAWP.2009.2021006
  77. 서정기, 장태성, 차원호, "인공위성 개발을 위한 유닛 열시험 개요와 실제", 한국항공우주학회지, 41(11), pp. 915-920, 2013년 11월. https://doi.org/10.5139/JKSAS.2013.41.11.915
  78. Z. Y. Zhang, Y. R. Wei, and K. Wu, "Broadband millimeter-wave single balanced mixer and its applications to substrate integrated wireless system", IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 660-669, Mar. 2012. https://doi.org/10.1109/TMTT.2011.2172808
  79. A. Doghri, T. Djerafi, and A. Gheoto, "Broadband substrate-integrated-waveguide six-port applied to the development of polarimetric imaging radiometer", in Proc. 41th Eur. Microwave Conf., Manchester, UK, pp. 393-396, 2011.
  80. S. Hu, L. Wang, Y. Z. Xiong, B. Zhang, and T. G. Lim, "A 434 GHz SiGe BiCMOS transmitter with an on-chip SIW slot antenna", ASSCC Dig. Tech. Papers, pp. 269-272, 2011.
  81. S. H. Hsu, Y. J. Ren, and K. Chang, "A dual-polarized planar-array antenna for S-band and X-band airborne applications", IEEE Trans. Antennas Propag., vol. 51, no. 4, pp. 70-78, Apr. 2009.