DOI QR코드

DOI QR Code

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data

GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출

  • Lee, Seoyoung (Department of Atmospheric Sciences, Yonsei University) ;
  • Choi, Myungje (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Mijin (Department of Atmospheric Sciences, Yonsei University) ;
  • Lim, Hyunkwang (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2017.11.30
  • Accepted : 2017.12.15
  • Published : 2017.12.31

Abstract

Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

위성을 이용한 에어로졸 원격탐사에서 높은 공간해상도의 정보에 대한 요구가 많았음에도 그동안 단일화소가 갖는 물리적인 에어로졸 신호의 약화와 구름 등에 의한 오차 증가로 인해 산출에 어려움을 겪어왔다. 본 연구에서는 GOCI 자료를 이용하여 한-미 협력 국내 대기질 공동조사 캠페인 기간인 2016년 5, 6월에 대해 GOCI의 최대 공간 해상도인 500 m에서 고해상도 에어로졸 광학 깊이를 산출하였다. 기존의 GOCI 알고리즘은 6 km 해상도로 에어로졸 산출물을 제공해왔으며, 이번 연구에서 개발한 고해상도 산출 알고리즘은 기존 알고리즘을 기반으로 한다. 에어로졸 모형, 조견표 구성 및 역추산 과정은 동일하게 이용되었으나, 높은 해상도에서의 구름 제거 방법이 개선되었다. 그 결과, 몇 가지 사례에 대하여 6 km 산출물과 비교하였을 때 500 m 산출물의 분포 및 크기는 유사하게 나타났으나 공간 해상도가 높기 때문에 더 많은 화소에 대하여 산출되었다. 이에 따라 작은 규모의 구름 주위에서도 산출이 되었고, 에어로졸의 공간적인 변화를 세밀하게 살펴볼 수 있었다. 정확도 검증을 위하여 지상 관측 장비와 비교를 하였을 때 공간해상도가 크게 좋아졌음에도 상관 계수가 0.76, 기대 오차 내에 들어오는 비율이 51.1%로 6 km 산출물과 유사한 검증 결과를 보였다.

Keywords

References

  1. Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, B. Holben, T. F. Eck, Z. Li, and C. H. Song, 2017. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmospheric Measurement Techniques Discussion, https://doi.org/10.5194/amt-2017-251, in review, 2017.
  2. Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, U. Jeong, W. Kim, H. Hong, B. N. Holben, T. F. Eck, C. H. Song, J.-H. Lim, and C.-K. Song, 2016. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmospheric Measurement Techniques, 9(3): 1377-1398. https://doi.org/10.5194/amt-9-1377-2016
  3. Cox, C. and W. Munk, 1954. Measurement of the roughness of the sea surface from photographs of the Sun's glitter, Journal of the Optical Society of America, 44(11): 838-850. https://doi.org/10.1364/JOSA.44.000838
  4. Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O'neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24): 31333-31349. https://doi.org/10.1029/1999JD900923
  5. Garay, M. J., O. V. Kalashnikova, and M. A. Bull, 2017. Development and assessment of a higherspatial- resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data, Atmospheric Chemistry and Physics, 17(8): 5095. https://doi.org/10.5194/acp-17-5095-2017
  6. Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, and T. Nakajima, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote sensing of environment, 66(1): 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  7. Hsu, N. C., M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S. C. Tsay, 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315. https://doi.org/10.1002/jgrd.50712
  8. Hu, X., L. A. Waller, A. Lyapustin, Y. Wang, M. Z. Al- Hamdan, W. L. Crosson, M. G. Estes, S. M. Estes, D. A. Quattrochi, and S. J. Puttaswamy, 2014. Estimating ground-level PM 2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model, Remote sensing of environment, 140: 220-232. https://doi.org/10.1016/j.rse.2013.08.032
  9. Ishida, H., T. Y. Nakjima, T. Yokota, N. Kikuchi, and H. Watanabe, 2011. Investigation of GOSAT TANSO-CAI cloud screening ability through an intersatellite comparison, Journal of Applied Meteorology and Climatology, 50(7): 1571-1586. https://doi.org/10.1175/2011JAMC2672.1
  10. Kim, J., J. Lee, H. C. Lee, A. Higurashi, T. Takemura, and C. H. Song, 2007. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign, Journal of Geophysical Research: Atmospheres, 112(D22).
  11. Kim, J., J. M. Yoon, M. Ahn, B. Sohn, and H. Lim, 2008. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R, International Journal of Remote Sensing, 29(21): 6181-6192. https://doi.org/10.1080/01431160802175553
  12. Kim, M., J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T. F. Eck, J. H. Lim, C. K. Song, and S. Lee, 2016. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS), Atmospheric Chemistry and Physics, 16(3): 1789-1808. https://doi.org/10.5194/acp-16-1789-2016
  13. Kim, M., J. Kim, M. S. Wong, J. Yoon, J. Lee, D. Wu, P. Chan, J. E. Nichol, C.-Y. Chung, and M.-L. Ou, 2014. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction, Remote sensing of environment, 142: 176-187. https://doi.org/10.1016/j.rse.2013.12.003
  14. Lee, J., J. Kim, C. H. Song, J.-H. Ryu, Y.-H. Ahn, and C. Song, 2010. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sensing of Environment, 114(5): 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  15. Lee, J., J. Kim, P. Yang, and N. C. Hsu, 2012. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database, Atmospheric Chemistry and Physics, 12(15): 7087-7102. https://doi.org/10.5194/acp-12-7087-2012
  16. Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6(11): 2989. https://doi.org/10.5194/amt-6-2989-2013
  17. Li, C., A.-H. Lau, J. Mao, and D. A. Chu, 2005. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong, IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2650-2658. https://doi.org/10.1109/TGRS.2005.856627
  18. Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, M. Amann, H. R. Anderson, and K. G. Andrews, 2013. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010, The Lancet, 380(9859): 2224-2260. https://doi.org/10.1016/S0140-6736(12)61766-8
  19. Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J. Reid, 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, Journal of Geophysical Research: Atmospheres, 116(D3).
  20. Remer, L. A., Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, and R. G. Kleidman, 2005. The MODIS aerosol algorithm, products, and validation, Journal of the atmospheric sciences, 62(4): 947-973. https://doi.org/10.1175/JAS3385.1
  21. Remer, L. A., S. Mattoo, R. C. Levy, and L. A. Munchak, 2013. MODIS 3 km aerosol product: algorithm and global perspective, Atmospheric Measurement Techniques, 6(7): 1829. https://doi.org/10.5194/amt-6-1829-2013
  22. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex, and B. M. Midgley, 2013. IPCC, 2013: Climate Change 2013: the physical science basis, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, NY, USA.
  23. Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt, 2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, Journal of Geophysical Research: Atmospheres, 112(D24).
  24. Wang, K., R. E. Dickinson, and S. Liang, 2009. Clear sky visibility has decreased over land globally from 1973 to 2007, Science, 323(5920): 1468-1470. https://doi.org/10.1126/science.1167549
  25. Zanobetti, A. and J. Schwartz, 2009. The effect of fine and coarse particulate air pollution on mortality: a national analysis, Environmental Health Perspectives, 117(6): 898. https://doi.org/10.1289/ehp.0800108