• Title/Summary/Keyword: distributed algorithms

Search Result 591, Processing Time 0.037 seconds

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

A Study on Security Enhancement for the Use and Improvement of Blockchain Technology (보안성 강화를 위한 블록체인기술의 활용과 개선방안 연구)

  • Seung Jae Yoo
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.63-68
    • /
    • 2023
  • In this study, in relation to blockchain protocol and network security, we study the configuration of blockchain and encryption key management methods on smart contracts so that we can have a strong level of response to MITM attacks and DoS/DDoS attacks. It is expected that the use of blockchain technology with enhanced security can be activated through respond to data security threats such as MITM through encryption communication protocols and enhanced authentication, node load balancing and distributed DDoS attack response, secure coding and vulnerability scanning, strengthen smart contract security with secure consensus algorithms, access control and authentication through enhanced user authentication and authorization, strengthen the security of cores and nodes, and monitoring system to update other blockchain protocols and enhance security.

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

A Design of a Network Module supporting Primitive Messaging Operations for MOM (MOM의 Primitive Messaging Operation을 지원하는 네트워크 모듈 설계)

  • Kang, Tae-Gun;Sohn, Kang-Min;Ham, Ho-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.115-118
    • /
    • 2003
  • 최근 MOM 기술은 비즈니스 로직을 수행하는 애플리케이션 서버의 필수적인 구성요소로서 자리잡고 있으며, 보통 수백에서 수천의 클라이언트 요청을 처리할 수 있는 능력을 제공한다. MOM 은 이러한 대용량의 클라이언트 요청을 효과적으로 처리하기 위해서 효율적이고 확장성있는(스케일러블) 네트워크 모듈이 필요하며, 다양한 네트워크 프로토콜을 지원해야 한다. MOM이 기본적으로 지원하는 메시징 기능은 PTP(Point-To-Point)와 publish/subscribe 메시징 도메인으로 나뉘는데 이 논문에서는 두 가지 메시징 도메인과 그룹통신 메시징 서비스 기능을 동시에 지원하는 MoIM-Message 시스템의 하부 통신 모듈의 설계에 대해 기술한다. PTP와 publish/subscribe 메시징을 지원하기 위해 세가지 프리미티브 메시징 오퍼레이션인 "synchronous send", "synchronous receive", "asynchronous receive"를 정의하였으며 하부 통신 모듈 역할을 하는 메시지 트랜스포트 관리 계층내의 트랜스포트 관리자 내에 구현되었다. 트랜스포트 관리자는 다양한 트랜스포트 프로토콜을 적용할 수 있도록 하기 위해 트랜스포트 어댑터로 설계되었으며, 대량의 통신 요청을 효과적으로 처리하기 위해 "polling with multiple service thread model" 기법을 적용하여 구현되었다. 또한, 모바일 클라이언트 환경을 지원하기 위해 클라이언트 측 통신 모듈을 IPaq PDA 상에 포팅하였다. 본 논문에서 제안하는 세 가지 프리미티브 메시징 오퍼레이션을 제공하는 통신 모듈은 MOM이 기본적으로 지원해야 할 메시징 도메인과 대용량의 클라이언트 요청을 효율적으로 처리할 수 있는 구조를 가진다.es}8$ 모드를 모두 사용한 경우와 $8{\times}8$ 단일모드를 사용한 경우보다 계산 시간이 감소하였음을 확인하였다.행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에

  • PDF

A Construction of TMO Object Group Model for Distributed Real-Time Services (분산 실시간 서비스를 위한 TMO 객체그룹 모델의 구축)

  • 신창선;김명희;주수종
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.307-318
    • /
    • 2003
  • In this paper, we design and construct a TMO object group that provides the guaranteed real-time services in the distributed object computing environments, and verify execution power of its model for the correct distributed real-time services. The TMO object group we suggested is based on TINA's object group concept. This model consists of TMO objects having real-time properties and some components that support the object management service and the real-time scheduling service in the TMO object group. Also TMO objects can be duplicated or non-duplicated on distributed systems. Our model can execute the guaranteed distributed real-time service on COTS middlewares without restricting the specially ORB or the of operating system. For achieving goals of our model. we defined the concepts of the TMO object and the structure of the TMO object group. Also we designed and implemented the functions and interactions of components in the object group. The TMO object group includes the Dynamic Binder object and the Scheduler object for supporting the object management service and the real-time scheduling service, respectively The Dynamic Binder object supports the dynamic binding service that selects the appropriate one out of the duplicated TMO objects for the clients'request. And the Scheduler object supports the real-time scheduling service that determines the priority of tasks executed by an arbitrary TMO object for the clients'service requests. And then, in order to verify the executions of our model, we implemented the Dynamic Binder object and the Scheduler object adopting the binding priority algorithm for the dynamic binding service and the EDF algorithm for the real-time scheduling service from extending the existing known algorithms. Finally, from the numerical analyzed results we are shown, we verified whether our TMO object group model could support dynamic binding service for duplicated or non-duplicated TMO objects, also real-time scheduling service for an arbitrary TMO object requested from clients.

Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling (수치고도모델의 격자크기와 유수흐름 알고리듬의 선택이 토양경관 모델링에 미치는 영향)

  • Park, S.J.;Ruecker, G.R.;Agyare, W.A.;Akramhanov, A.;Kim, D.;Vlek, P.L.G.
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.2
    • /
    • pp.122-145
    • /
    • 2009
  • Terrain parameters calculated from digital elevation models (DEM) have become increasingly important in current spatially distributed models of earth surface processes. This paper investigated how the ability of upslope area for predicting the spatial distribution of soil properties varies depending on the selection of spatial resolutions of DEM and algorithms. Four soil attributes from eight soil-terrain data sets collected from different environments were used. Five different methods of calculating upslope area were first compared for their dependency on different grid sizes of DEM. Multiple flow algorithms produced the highest correlation coefficients for most soil attributes and the lowest variations amongst different DEM resolutions and soil attributes. The high correlation coefficient remained unchanged at resolutions from 15 m to 50 m. Considering decreasing topographical details with increasing grid size, we suggest that the size of 15-30 m may be most suitable for soil-landscape analysis purposes in our study areas.

Distributed Throughput-Maximization Using the Up- and Downlink Duality in Wireless Networks (무선망에서의 상하향 링크 쌍대성 성질을 활용한 분산적 수율 최대화 기법)

  • Park, Jung-Min;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.878-891
    • /
    • 2011
  • We consider the throughput-maximization problem for both the up- and downlink in a wireless network with interference channels. For this purpose, we design an iterative and distributive uplink algorithm based on Lagrangian relaxation. Using the uplink power prices and network duality, we achieve throughput-maximization in the dual downlink that has a symmetric channel and an equal power budget compared to the uplink. The network duality we prove here is a generalized version of previous research [10], [11]. Computational tests show that the performance of the up- and downlink throughput for our algorithms is close to the optimal value for the channel orthogonality factor, ${\theta}{\in}$(0.5, 1]. On the other hand, when the channels are slightly orthogonal (${\theta}{\in}$(0, 0.5]), we observe some throughput degradation in the downlink. We have extended our analysis to the real downlink that has a nonsymmetric channel and an unequal power budget compared to the uplink. It is shown that the modified duality-based approach is thoroughly applied to the real downlink. Considering the complexity of the algorithms in [6] and [18], we conclude that these results are quite encouraging in terms of both performance and practical applicability of the generalized duality theorem.

Bayesian Analysis for Categorical Data with Missing Traits Under a Multivariate Threshold Animal Model (다형질 Threshold 개체모형에서 Missing 기록을 포함한 이산형 자료에 대한 Bayesian 분석)

  • Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-164
    • /
    • 2002
  • Genetic variance and covariance components of the linear traits and the ordered categorical traits, that are usually observed as dichotomous or polychotomous outcomes, were simultaneously estimated in a multivariate threshold animal model with concepts of arbitrary underlying liability scales with Bayesian inference via Gibbs sampling algorithms. A multivariate threshold animal model in this study can be allowed in any combination of missing traits with assuming correlation among the traits considered. Gibbs sampling algorithms as a hierarchical Bayesian inference were used to get reliable point estimates to which marginal posterior means of parameters were assumed. Main point of this study is that the underlying values for the observations on the categorical traits sampled at previous round of iteration and the observations on the continuous traits can be considered to sample the underlying values for categorical data and continuous data with missing at current cycle (see appendix). This study also showed that the underlying variables for missing categorical data should be generated with taking into account for the correlated traits to satisfy the fully conditional posterior distributions of parameters although some of papers (Wang et al., 1997; VanTassell et al., 1998) presented that only the residual effects of missing traits were generated in same situation. In present study, Gibbs samplers for making the fully Bayesian inferences for unknown parameters of interests are played rolls with methodologies to enable the any combinations of the linear and categorical traits with missing observations. Moreover, two kinds of constraints to guarantee identifiability for the arbitrary underlying variables are shown with keeping the fully conditional posterior distributions of those parameters. Numerical example for a threshold animal model included the maternal and permanent environmental effects on a multiple ordered categorical trait as calving ease, a binary trait as non-return rate, and the other normally distributed trait, birth weight, is provided with simulation study.