Browse > Article

Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling  

Park, S.J. (Department of Geography, Seoul National University)
Ruecker, G.R. (German Aerospace Center (DLR), German Remote Sensing Date Center (DFD))
Agyare, W.A. (Savanna Agricultural Research Institute)
Akramhanov, A. (Center for Development Research, University of Bonn)
Kim, D. (Department of Geography, Texas A&M University)
Vlek, P.L.G. (Center for Development Research, University of Bonn)
Publication Information
Journal of the Korean Geographical Society / v.44, no.2, 2009 , pp. 122-145 More about this Journal
Abstract
Terrain parameters calculated from digital elevation models (DEM) have become increasingly important in current spatially distributed models of earth surface processes. This paper investigated how the ability of upslope area for predicting the spatial distribution of soil properties varies depending on the selection of spatial resolutions of DEM and algorithms. Four soil attributes from eight soil-terrain data sets collected from different environments were used. Five different methods of calculating upslope area were first compared for their dependency on different grid sizes of DEM. Multiple flow algorithms produced the highest correlation coefficients for most soil attributes and the lowest variations amongst different DEM resolutions and soil attributes. The high correlation coefficient remained unchanged at resolutions from 15 m to 50 m. Considering decreasing topographical details with increasing grid size, we suggest that the size of 15-30 m may be most suitable for soil-landscape analysis purposes in our study areas.
Keywords
digital elevation model; scale; soil-landform modeling; terrain analysis; upslope area;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Beven, K. J. and Kirkby, M. J., 1979, A physically-based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24, 43-69   DOI   ScienceOn
2 Bolstad, P. V. and Stowe, T., 1994, An evaluation of DEM accuracy: Elevation, slope, and aspect, Photogrammetric Engineering and Remote Sensing, 60, 1327-1332
3 Burt, T. P. and Butcher, D. P., 1985, Topographic controls of soil moisture distributions, Journal of Soil Science, 36, 469-486   DOI
4 Conrad, O., 1998, DiGem-Software for Digital Elevation Model, Ph.D. Thesis (in German), University of Goettingen, Germany, Available at http:// downloads.sourceforge.net/saga-gis/digem_2.0_ bin.zip
5 Costa-Cabral, M. C. and Burges, S. J., 1994, Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal area, Water Resources Research, 30, 1681-1692   DOI   ScienceOn
6 Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H., 2007, Digital elevation accuracy and grid cell size: effects on estimated terrain attributes, Soil Science Society of America Journal, 71, 1371-1380   DOI   ScienceOn
7 Hutchinson, M. F. and Dowling, T. I., 1991, A continental hydrological assessment of a new grid-based digital elevation model of Australia, Hydrological Processes, 5, 45-58   DOI
8 Moore, I. D., Turner, A. K., Wilson, J. P., Jenson, S. K., and Band, L. E., 1993a, GIS and land surfacesubsurface modeling, in Goodchild, M. F., Parks, B. O., and Steyaert, L. T. (eds.), Environmental Modeling with GIS, Oxford University Press, New York, 196-230
9 O'Callaghan, J. F. and Mark, D. M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28, 323-344   DOI   ScienceOn
10 O'Callaghan, J. F. and Mark, D. M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28, 323-344   DOI   ScienceOn
11 Park, S. J. and Vlek, P. L. G., 2002b, Environmental correlation of three-dimensional spatial soil variability: a comparison of three adaptive techniques, Geoderma, 109, 117-140   DOI   ScienceOn
12 Wolock, D. M. and McCabe, G. J., 1995, Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31, 1315 -1324   DOI   ScienceOn
13 Quinn, P. F., Beven, K. J., Chevallier, P., and Planchon, O., 1991, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, 5, 59-79   DOI
14 Schulze, R., 2000, Transcending scales of space and time in impact studies of climate and climate change on agrohydrological responses, Agriculture, Ecosystems and Environment, 82, 185-212   DOI   ScienceOn
15 Speight, J. G., 1974, A parametric approach to landform regions, in Brown, E. H. and Waters, R. S. (eds.), Progress in Geomorphology, Alden, London, 213- 230
16 Gessler, P. E., Moore, I. D., McKenzie, N. J., and Ryan, P. J., 1995, Soil-landscape modeling and spatial prediction of soil attributes, International Journal of Geographical Information Systems, 9, 421-432   DOI   ScienceOn
17 Moore, I. D., Gessler, P. E., Nielsen, G. A., and Peterson, G. A., 1993b, Soil attribute prediction using terrain analysis, Soil Science Society of America Journal, 57, 443-452   DOI   ScienceOn
18 Western, A. W. and Bloschl, G., 1999, On the spatial scaling of soil moisture, Journal of Hydrology, 217, 203-224   DOI   ScienceOn
19 Desmet, P. J. J. and Govers, G., 1996, Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies, International Journal of Geographical Information Systems, 10, 311-331   DOI   ScienceOn
20 Beven, K., 1995, Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models, in Kalma, J. D. and Sivapalan, M. (eds.), Scale Issues in Hydrological Modelling, John Wiley & Sons, Chichester, 263- 282
21 Holmes, K. W., Chadwick, O. A., and Kyriakidis, P. C., 2000, Error in a USGS 30-meter digital elevation model and its impact on terrain modeling, Journal of Hydrology, 233, 154-173   DOI   ScienceOn
22 McBratney, A. B., Odeh, I. O. A., Bishop, T. F. A., Dunbar, M. S., and Shatar, T. M., 2000, An overview of pedometric techniques for use in soil survey, Geoderma, 97, 293-327   DOI   ScienceOn
23 Strahler, A. N. and Strahler, A. H., 1984, Elements of Physical Geography, John Wiley & Sons, New York
24 Zhang, W. H. and Montgomery, D. R., 1994, Digital elevation model grid size, landscape representation, and hydrologic simulations, Water Resources Research, 30, 1019-1028   DOI   ScienceOn
25 Jenson, S. K., 1991, Applications of hydrologic information automatically extracted from digital elevation models, Hydrological Processes, 5, 31- 44   DOI
26 Thieken, A. H., Lucke, A., Diekkrüger, B., and Richter, O., 1999, Scaling input data by GIS for hydrological modeling, Hydrological Processes, 13, 611-630   DOI   ScienceOn
27 Beckett, P. H. T. and Webster, R., 1971, Soil variability: A review, Soils and Fertilizers, 34, 1-15
28 Freeman, G. T., 1991, Calculating catchment area with divergent flow based on regular grid, Computers and Geosciences, 17, 413-422   DOI   ScienceOn
29 Lea, N. J., 1992, An aspect-driven kinematic routing algorithm, in Parsons, A. J. and Abrahams, A. D. (eds.), Overland Flow: Hydraulics and Erosion Mechanics, UCL Press, London, 393-407
30 Gallant, J. C. and Wilson, J. P., 2000, Primary topographic attributes, in Wilson, J. P. and Gallant, J. C. (eds.), Terrain Analysis: Principles and Application, John Wiley & Sons, New York, 51-86
31 Moore, I. D., Gessler, P. E., Nielsen, G. A., and Peterson, G. A., 1993b, Soil attribute prediction using terrain analysis, Soil Science Society of America Journal, 57, 443-452   DOI   ScienceOn
32 Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. R., 1996, Modeling topographic potential for erosion and deposition using GIS, International Journal of Geographical Information Systems, 10, 629-641   DOI   ScienceOn
33 Thompson, J. A., Bell, J. C., and Butler, C. A., 2001, Digital elevation model resolution: Effects on terrain attribute calculation and quantitative soillandscape modelling, Geoderma, 100, 67-89   DOI   ScienceOn
34 Anderson, D. W. and Ingram, J. S. I., 1993, Tropical Soil Biology and Fertility: A Handbook of Methods, CAB International, Wallingford, UK
35 Bloschl, G. and Sivapalan, M., 1995, Scale issues in hydrological modelling: A review, Hydrological Processes, 9, 313-330   DOI   ScienceOn
36 Kim, D., Yu, K. B., and Park, S. J., 2008, Identification and visualization of complex spatial pattern of coastal dune soil properties using GIS-based terrain analysis and geostatistics, Journal of Coastal Research, 24(4C), 50-60
37 Park, S. J., van de Giesen, N., and Vlek, P. L. G., 2005, Optimal spatial scale for land use change modelling: a case study in a savanna landscape in Northern Ghana, Journal of the Korean Geographical Society, 40, 221-241
38 Wolock, D. M. and Price, C. V., 1994, Effects of digital elevation model and map scale and data resolution on a topography-based watershed model, Water Resources Research, 30, 3041-3052   DOI   ScienceOn
39 Hutchinson, M. F. and Gallant, J. C., 2000, Digitial elevation models and representation of terrain shape, in Wilson, J. P. and Gallant, J. C. (eds.), Terrain Analysis: Principles and Application, John Wiley & Sons, New York, 29-50
40 Fairfield, J. and Leymarie, P., 1991, Drainage networks from grid digital elevation models, Water Resources Research, 27, 709-717   DOI
41 Ruhe, R. V. and Walker, P. H., 1968, Hillslope models and soil formation II: Open systems, Transactions of the Ninth Congress of the International Soil Science Society, Adelaide, Australia, 551-560
42 Wilson, J. P., Repetto, P. L., and Snyder, R. D., 2000, Effect of data source, grid resolution, and flow routing method on computed topographic attribute, in Wilson, J. P. and Gallant, J. C. (eds.), Terrain Analysis: Principles and Application, John Wiley & Sons, New York, 133-161
43 Panuska, J. C., Moore, I. D., and Kramer, L. A., 1991, Terrain analysis: Integration into the agriculture non-point source (AGNPS) pollution model, Journal of Soil Water Conservation, 46, 59-64
44 Wilson, J. P. and Gallant, J. C., 2000, Digital terrain analysis, in Wilson, J. P. and Gallant, J. C. (eds.), Terrain Analysis: Principles and Application, John Wiley & Sons, New York, 1-27
45 Bauer, J., Rohdenburg, H., and Bork, H. R., 1985, Ein digitales reliefmodell als vorraussetzung f$\"{u}$er ein deterministisches modell der wasser- und stofffluesse, in Bork, H. R. and Rohdenburg, H. (eds.), Parameteraufbereitung f$\"{u}$er deterministische Gebiets-Wassermodelle, Grundlagenarbeiten zu Analyse von Agrar-Oekosystemen, Landscha ftsgenese und Landschaftsoekologie, 1-15
46 Garbrecht, J. and Martz, L. W., 1994, Grid size dependency of parameters extracted from digital elevation models, Computers and Geosciences, 20, 85-87   DOI   ScienceOn
47 Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H., 2006, Comparison of gridbased algorithms for computing upslope contributing area, Water Resources Research, 42, W09416, doi:10.1029/2005WR004648   DOI   ScienceOn
48 Tarboton, D. G., 1997, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33, 309-319   DOI   ScienceOn
49 Oksanen, J. and Sarjakoski, T., 2005, Error propagation analysis of DEM-based drainage basin delineation, International Journal of Remote Sensing, 26, 3085-3102   DOI   ScienceOn
50 Western, A. W. and Grayson, R. B., 1998, The Tarrawarra data set: Soil moisture patterns, soil characteristics and hydrological flux measurements, Water Resources Research, 34, 2765-2768   DOI   ScienceOn
51 Park, S. J. and Burt, T. P., 2002, Identification and characterization of pedogeomorphological processes on a hillslope using an indirect gradient analysis, Soil Science Society of America Journal, 66, 1897-1910   DOI
52 Park, S. J. and Vlek, P. L. G., 2002a, Soil-landscape analysis as a tool for sustainable land resource management in developing countries, Geographical Journal of Korea, 36, 31-49
53 Quinn, P. F., Beven, K. J., and Lamb, R., 1995, The ln(A/tanβ) index: How to calculate it and how to use it within TOPMODEL framework, Hydrological Processes, 9, 161-182   DOI   ScienceOn