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Influence of Grid Cell Size and Flow Routing Algorithm
on Soil-Landform Modeling
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Abstract : Terrain parameters calculated from digital elevation models (DEM) have become increasingly important in
current spatially distributed models of earth surface processes. This paper investigated how the ability of upslope area
for predicting the spatial distribution of soil properties varies depending on the selection of spatial resolutions of DEM
and algorithms. Four soil attributes from eight soil-terrain data sets collected from different environments were used.
Five different methods of calculating upslope area were first compared for their dependency on different grid sizes of
DEM. Multiple flow algorithms produced the highest correlation coefficients for most soil attributes and the lowest
variations amongst different DEM resolutions and soil attributes. The high correlation coefficient remained unchanged
at resolutions from 15 m to 50 m. Considering decreasing topographical details with increasing grid size, we suggest
that the size of 15-30 m may be most suitable for soil-landscape analysis purposes in our study areas.

Key Words : digital elevation model, scale, soil-landform modeling, terrain analysis, upslope area

29 : £ 12 o 2R AEH AYueE ABH TR AN FHE FHEAL S| Qo] F27 aaojrt of =FolA
= A8 " A 4xupslope contributing area)7} EFAI A ] 713 EXE &3l 5o AMSE gl A7) wet o
EA) WEheRls st Aolet BE2AE AUE o5 29 ArAFolA EF-AE ARE Y53t o1F 479 EYA
A 240 ZFAFL oAl 7HR Y duE)ES S AAHAA A ARESlY o] Aol LA LERFH Y iz duht Uzt
IA & Bafstet, chiakg48 8 o3l E(multiple flow algorithm)& 8 Al4bg A P47} i) Eohfiaol 2.0 A
BAZ HY7 FA o Axp27)9] Wsle) Yo Wizeg Bych A Haet Eofuis Alo]o] 52 ATBAIE 15-50 m] S =l
A AR &8 Byt A3 5 FUMA ALY Lske nNAFE AR SAE RIS, 15-30 m F 29| FUHE A
o] BT ndlgof Ay A og whth

20| £ANERY, AAY, EFHT 2, AP B4, AHEFgAP

<k

x o

Q

ue,

* Associate Professor, Department of Geography, Seoul National University, catena@snu.ac.kr

* Wissenschaftlicher Angestellter, German Aerospace Center (DLR), German Remote Sensing Date Center (DFD),
Gerd Ruecker@dir.de

** Senior Researcher, Savanna Agricultural Research Institute, wagyare@yahoo.co.uk

+++ Researcher, Center for Development Research, University of Bonn, api001@yahoo.com

+++ Ph D. candidate, Department of Geography, Texas A&M University, geokim@geog.tamu.edu

«+ Director, Center for Development Research, University of Bonn, p.vlek@zef.de

- 122 -



Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling

1. Introduction

As modeling approaches become more spatial-
ly oriented, the identification of the spatial distri-
bution of energy and material flows over com-
plex landscapes is essential. Digital elevation
models (DEM) have been widely used to meet
these goals in modeling geomorphological,
hydrological, and pedological processes (Moore
et al., 1993a; Wilson and Gallant, 2000). Many
previous researchers, however, have already
shown that the source of DEM, its grid resolu-
tions, and the different algorithms for calculating
specific landform variables have a strong influ-
ence on the spatial distribution of individual ter-
rain parameters and modeling results (e.g. Zhang
and Montgomery, 1994; Desmet and Govers,
1996; Wilson et al., 2000; Thompson et al., 2001).
Among many issues related to the use of DEM in
environmental research, we focus on two issues:
grid resolution and algorithms for calculating
upslope area. Specifically, we are interested in
the application of raster DEM to predict the spa-
tial distribution of soil attributes over the land-
scape.

The appropriate size of the horizontal resolu-
tion (grid size) has been a central issue for the
application of DEM. Notwithstanding the rapid
development in field surveying techniques, con-
struction of reliable DEM at a fine resolution is
still one of the most difficult tasks, especially for
scientists working in regions with poor access
and heavily vegetated areas. Consequently, the
choice of the optimum grid size for a given pur-
pose is one of the most frequently asked ques-
tions before a field investigation is launched.
Several recent studies have already explored this
issue in relation to various modeling attempts,
notably terrain-based hydrological process mod-
eling (Hutchinson and Dowling, 1991; Jenson,
1991; Panuska et al, 1991; Quinn et al, 1991,

1995; Wolock and Price, 1994; Garbrecht and
Martz, 1994; Zhang and Montgomery, 1994;
Thieken et al,, 1999).

Despite the difference of selected DEM in
terms of both data source and quality, the gener-
al conclusions in the research so far are similar:
the coarser grid resolution tends to smoothen
landforms and consequently key geomorphologi-
cal and hydrological features are lost. It is thus a
common belief that more detailed depiction of
surface topography yields more accurate model-
ing results. Quinn et al. (1995) compared differ-
ent grid sizes to validate a terrain-based hydro-
logical model (TOPMODEL) prediction and sug-
gested that a grid size of 10 m or less is neces-
sary. Mitasova et al. (1996) also proposed that a
grid resolution of 5 m or less may be required to
predict erosion and depositional processes in
agricultural landscapes. In contrast to these
reports, others argued that DEM with very fine
resolutions (e.g. with 2 or 5 m grid size) only
slightly improve model performance, despite the
more realistic presentation of surface topography
(Beven, 1995; Thieken et al, 1999; Wilson and
Gallant, 2000). An appropriate grid resolution
depends entirely on the purpose of modeling
and the quality of DEM, but the selected grid
size should match the terrain-dependent natural
geomorphological and hydrological processes
(Hutchinson and Gallant, 2000). Zhang and
Montgomery (1994) conclude that a 10 m grid
size may be a rational compromise between
increasing resolution of grid size and the data
volume needed for geomorphological and
hydrological process modeling.

Another widely discussed technical issue in
terrain analyses is the choice of algorithms for
calculating an ‘upslope area’. Upslope area (A) is
defined as the area above a given length of con-
tour that contributes flow across the contour
(Speight, 1974; Moore et al., 1993a). The upslope
area plays an important role in terrain analyses
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since it is used to estimate the water-mass flow
potentials at a specific location (Moore et al,
1993a). Reflecting its importance, many different
algorithms for calculating the upslope area are
reported in current literature (O'Callaghan and
Mark, 1984; Bauer et al., 1985; Fairfield and
Leymarie, 1991; Freeman, 1991; Quinn et al.,
1991; 1995; Costa-Cabral and Burges, 1994;
Tarboton, 1997; Wilson et al., 2000). There has
been much theoretical discussion on the suitabil-
ity of different algorithms, based on either statis-
tical comparison of calculated parameters or
visual assessment of flow representation (e.g.
Quinn et al, 1991; Tarboton, 1997). However,
only few researchers have investigated the
advantages and disadvantages of each individual
algorithm using empirical data. Furthermore, the
few available empirical assessments are mostly
limited to hydrological responses in a specific
modeling framework (Wolock and McCabe,
1995; Wilson et al., 2000). Such a framework
considers a catchment as a whole without taking
into account the flow routing processes on an
individual hillslope or in a landscape. Desmet
and Govers (1996) presented a notable exception
by comparing different algorithms to predict the
spatial occurrence of gully positions in Belgium.
In this study, we contend that the spatial distri-
bution of selected soil properties (e.g. soil mois-
ture, soil pH, clay content) may provide an
opportunity for investigating the suitability of dif-
ferent grid resolutions and algorithms. Attempts
to predict the distribution of soil attributes using
terrain analysis have a long history in pedologi-
cal communities. Since Ruhe and his colleagues
(e.g. Ruhe and Walker, 1968) first attempted to
establish a functional correlation between certain
soil properties and selected topographical para-
meters on loess-covered hillslopes in Iowa, many
similar studies have followed. This approach has
become the backbone for modern soil-landscape
analysis (McBratney et al., 2000; Park and Vlek,

2002a). In a soil-landscape analyses framework,
the upslope area and its derivates (e.g. specific
catchment area, wetness index, stream power
index) are the most widely used terrain parame-
ters (see Park and Vlek, 2002b for a summary).
Previous investigations have proved that there is
a strong correlation between soil variability and
upslope area calculated from DEM, because the
landform configuration frequently governs the
movement of materials and water on the land-
scape (Burt and Butcher, 1985; Moore et al.,
1993a; Gessler ef al., 1995; Western and Bloschl,
1999; Park and Viek, 2002b).

The objective of this paper is to examine the
influence of different grid resolutions and meth-
ods for calculating the upslope area on the envi-
ronmental correlation between the landform and
the spatial distribution of soil attributes under the
framework of soil-landscape analyses. The inves-
tigation of relationships between selected soil
attributes and terrain parameters may also pro-
vide a clear insight for other terrain-based mod-
eling approaches, since the spatial distribution of
soils provides a direct means to identify causal
relationships between terrain parameters calcu-
lated from DEM and actual processes occurring
at the hillslope and catchment level. Previous
soil-landscape studies have shown that individual
soil attributes respond differently to given pedo-
logical and hydrological processes at the same
slope (Park and Viek, 2002b). We therefore
selected soil attributes showing a clear linear
relationship between the distribution of soil
attributes (soil pH, soil moisture, clay content,
and soil organic matter) and possible flow
processes modeled by the upslope area. Due to
the complexity involved in the spatial distribu-
tion of soils in different environmental settings
and also the varying quality of DEM, we need a
large number of soil attributes in order to gener-
alize the issues raised. We were in the fortunate
situation of having eight soil-terrain data sets
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from all over the world encompassing coastal
and inland systems, which include 19 different
soil attributes.

2. Comparison of flow routing
algorithms

We selected five different algorithms for
calculating upslope area using grid-based DEM.
Although several contour-based algorithms are
available (Gallant and Wilson, 2000), our research
considers only grid-based methods. Algorithms in
current literature may be grouped into three
categories: single flow algorithms, multiple flow
algorithms, and flow tubing methods. The main
difference between these groups is how to
disperse the flow potential from the center cell to
neighboring cells. The following is only a brief
summary of the different methods, and many
excellent descriptions are already available in
Quinn et al. (1991), Costa-Cabral and Burges,
(1994), Desmet and Govers (1996), Tarboton
(1997), Conrad (1998), and Gallant and Wilson
(2000).

1) Deterministic single-flow direction
method (DS)

This method, first developed by O’Callaghan
and Mark (1984), assigns flow from each cell to
one of its eight neighbors. This algorithm allows
flow in only one direction (one cell), which is
determined by the steepest gradient among the
eight possible flow directions. This algorithm was
first developed to identify drainage systems, but
has widely been used to calculate upslope area
due to its simplicity. The upslope area is
estimated by multiplying the pixel area with the
number of pixels draining through each pixel.
The known problem of this method is the

inability to model flow divergence. Since the flow
can accumulate into a cell from several upslope
cells but flows out only into a single cell, this
method can model flow convergence in valleys
but not in ridge areas (Gallant and Wilson, 2000).
This method produces many parallel flow lines
on slopes having the same aspect, which is a
‘visually’ unrealistic flow pattern. Moreover, the
single flow algorithm is highly sensitive to small
topographical changes, especially at finer
resolutions.

2) Randomized single-flow direction
method (Rho8)

In this method, the flow path of D8 along the
steepest gradient was replaced by a stochastic
flow path decision in order to avoid the parallel
flow paths problem of the D8 method (Fairfield
and Leymarie, 1991). This method replaces the
fixed distance factor in the calculation of the
slope gradient of the D8 by a uniformly distrib-
uted random variable ranging from 0 to 1. While
this algorithm is considered to produce a more
realistic distribution of flow paths, the main limi-
tation of single flow algorithm, i.e. the lack of
flow dispersion, remains. Furthermore, due to the
random values in the determination of the
downslope flow direction, the result is not repro-
ducible.

3) Multiple-flow direction method (MFD)

Unlike the two previous methods, the multiple
flow direction method (MFD) distributes the flow
from one cell to multiple neighboring cells at
lower elevation (Freeman, 1991; Quinn et al.,
1991). This method was developed to overcome
the lack of flow dispersion in the D8 and Rho8
algorithms by dividing the amount of flow from
one cell to adjacent downslope cells. The fraction
of flow is calculated either in proportion to slope
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gradient (Freeman, 1991) or by a combination of
slope gradient and contour length (Quinn et al,,
1991). The method proposed by Freeman (1991)
and Quinn et al. (1991) shows virtually similar
results (Desmet and Govers, 1995), and
Freeman’s (1991) method is selected for this
study. These methods generate smoother and
more realistic flow accumulation patterns at low-
lying slope areas, but the main disadvantage is
that the flow variance is high (Costa-Cabral and
Burges, 1994, Tarboton, 1997). Desmet and
Govers (1995) compared six upslope area algo-
rithms to predict the occurrence of ephemeral
gullies in a piece of agricultural land in Belgium,
and recommended that multiple-flow algorithms
may be more suitable for upland areas to reduce
the parallel flow lines and sharp boundaries
between major flow lines and surrounding area.
On the other hand, single-flow algorithms may be
more suitable for valley positions, because they
minimize the over-dispersion of flow patterns.
Similar recommendation was also made by Quinn
et al. (1995).

4) Braunschweiger relief model (BRM)

This method also allows flow dispersion from
one cell to neighboring low elevation cells (Bauer
et al., 1985). Unlike MFD, the flow direction is
limited to maximum three neighboring cells in
order to avoid excessive dispersion of flow. The
calculation of the proportion of the flow to the
neighboring cells is determined iteratively by
categorizing slope direction. In each iteration, an
upslope polygon is constructed until the source
raster cell is reached, and the direction of the
flow route is calculated by the aspect and slope
gradient of the four neighboring raster points
(cited from Conrad, 1998).

5) D Infinite (Dinf)

This method was developed to avoid excessive
flow divergence of multiple algorithms (Tarboton,
1997). The main difference between single and
multiple flow algorithms is the fact that the flow
is dispatched along a ‘stream tube’ from one
central cell to one neighboring downslope cell.
The method was originally developed by Lea
(1992) and DEMON (Costa-Cabral and Burges,
1994). From a central cell in a 3 by 3 fixed
window, eight triangular facets are first formed.
Each of these facets has a downslope vector
drawn outwards from the center cell. The slope
and flow direction associated with the grid cell is
taken as the magnitude and direction of the
steepest downslope vector from all eight facets.
The flow from each cell either drains fully to one
downslope cell if the steepest downslope vector
falls along a cardinal, or two adjacent
neighboring cells if the vector falls between two
cells. The upslope area for each cell is thus
calculated as the sum of its own area and the
area of upslope neighbors that have some
fraction draining to it.

3. Data sets and methods

1) Study areas and soil attributes

Eight soil and terrain information collected
from seven different countries were used for this
study. The data sets have large variations, both in
general environmental conditions and terrain
characteristics. Table 1 summarizes geographical
location, environmental conditions, and soil-
terrain data. Figure 1 gives the general geometry
and also the distribution of a selected
representative soil attribute from each data set.
The size of the study areas varies from 0.03 to 12
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Figure 1. Study areas, soil sampling sites and the distribution of a representative soil attribute

See Table 1 for detailed information on environmental conditions and soil sampling. (a) Tarrawarra catchment, Australia,

and distribution of soil moisture; (b) Quantock, UK, and clay content distribution; (¢) Magada hillsope, Uganda, and soil

pH distribution; (d) Arlington research station, Wisconsin, USA, and distribution of loss-on-ignition; (e) Kongta, Uganda,

and clay content distribution; (f) Nayangpala, Ghana, and clay content distribution; (g) Khiva farm, Uzbekistan, and

distribution of organic matter; (h) Sindu coastal dunefield, South Korea, and distribution of soil moisture.

km?. The first five study areas (Tarrawarra,
Arlington, Bicknoller, Kongta, and Magada) are
single hillslopes or microcatchments, but the
Nyankpala and Khiva areas show more complex
landscapes covering larger areas (8.4 and 12 km?
respectively). In addition to these inland
environmental settings, we included a coastal
dune landscape located at western Korea (Figure
1H).

These soil and terrain data sets were collected
with different research objectives in mind and
contain a great deal of additional soil and
topographical information. Four soil attributes, i.e.
soil moisture, soil pH, clay content, and soil
organic matter, were selected for this study. In a
previous attempt to compare the spatial
distribution of 32 soil attributes, Park and Vlek
(2002b) showed that soil moisture, soil pH, and
clay content in topsoil generally have a clear
linear relationship with waterflow potential
governed by hillslope geometry. The spatial

distribution of these soil attributes is strongly
influenced by lateral hydrological and slope
processes with relatively simple vertical depth
functions, and quickly reaches equilibrium with
current slope processes. We consider that these
soil attributes are most indicative of the
relationship between the spatial distribution of
soils and the water flow potential modeled by the
upslope area. Even though much more complex
pedological processes are involved in the spatial
distribution of soil organic matter (Park and Burt,
2002), we included soil organic matter content,
considering its general importance in soil and
land management. Table 2 shows the descriptive
statistics and analytical methods used to measure
each soil attribute.

2) Terrain analyses

For all study areas except Khiva and Sindu, a
Differential Geographical Positioning System

- 128 -



S. J. Park - G. R. Riiecker - W. A. Agyare - A. Akramhanov - D. Kim - P. L. G. Viek

(DGPS) was used to generate point measurements.
The point measurements in Khiva were produced
by an aerial photo analysis by the State Land
Committee, Uzbekistan, while a total station was
used for topographical survey at Sindu. The
numbers of point measurements are given in
Table 1. The information on the vertical and
horizontal accuracy is only available for the
Arlington, Tarrawarra, Bicknoller, and Sindu
terrain data sets. The quality of the DEM may
influence the correlation between soil attributes
and individual terrain parameters (Hutchinson
and Gallant, 2000), but we assume that the
quality is sufficient for our objectives. Thompson
et al. (2001) recently reported that soil-landscape
analysis is relatively insensitive to the absolute

accuracy of elevation measurement.
Semivariogram analyses were conducted prior
to a kriging interpolation of each data set (Table
3). One of Gaussian, power, and linear functions
were used to interpolate the point measurement.
Modeling of the semivariogram was performed
using S-PLUS™ 6.0 software and interpolation
was performed with Surfer™ 7.0 program. Ten
different grid sizes of DEM (1, 2.5, 5, 7.5, 10, 15,
20, 30, 40, and 50 m) were generated for each
study area to investigate the grid resolution effect.
The five different upslope area algorithms,
reviewed in section 2, were calculated by DiGem
2.0, a terrain analysis program (see Conrad,
1998). The upslope area values at individual soil
measurement coordinates were derived from

Table 2. Summary of soil attributes examined

Data set Attributes Method N mean STD* min max
Tarrawarra Soil moisture Average of 13 TDS reading 125 33.97 2.02 27.60 38.00
Quantock Soil pH 1:2.5 in 0.01M CaCl, 64 277 0.49 2.19 4.62
Clay content Laser granulometery 64 871 1.83 5.43 15.37
Organic matter Loss-on-ignition 64 9.30 471 488 39.94
Magada Soil pH 1:2.5 in water 277 5.42 0.49 4.00 7.20
Clay content hydrometery 277 20.74 5.97 1.60 34.90
Organic carbon Anderson and Ingram (1993) 277 3.01 0.86 1.20 7.50
Arlington Soil pH 1:2.5 in 0.01M CaCl, 204 6.71 0.17 6.25 7.09
Soil moisture hydrometery 204 20.82 1.84 17.00 26.56
Organic matter Loss-on-ignition 204 6.96 118 4.85 9.35
Kongta Soil pH 1:2.5 in water 153 5.73 0.39 5.00 7.00
Clay content hydrometery 153 50.95 5.43 38.00 64.30
Organic carbon Anderson and Ingram (1993) 153 5.09 1.16 2.70 9.70
Nyankpala Soil pH 1:2.5 in water 202 4.86 0.51 3.55 7.34
Clay content hydrometery 202 7.31 6.15 0.44 47.20
Organic carbon Anderson and Ingram (1993) 202 0.49 0.28 0.04 1.35
Khiva Soil pH 1:2.5 in water 440 7.21 0.29 6.37 7.99
Clay content hydrometery 440 24.94 15.33 0.40 72.20
Organic carbon Anderson and Ingram (1993) 440 0.67 0.31 0.04 1.97
Sindu Soil moisture Gravimetric method 193 7.13 6.09 251 30.94
Soil pH 1:2.5 in water 193 6.98 0.74 5.66 898
Organic matter Loss-on-ignition 193 1.24 0.28 0.70 2.20

* STD: standard deviation
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Table 3. Variogram models for the DEM used

Site Anisotropy Mode] Nugget sill Range Slope
Tarrawatra, AU - Gaussian 0.002 39.00 126.26 -
Bicknoller, UK 135° Power 0.000 - 2.03 0.049
Kongta, UG 90° Power 0.348 - 1.601 0.001
Magada, UG 115° Gaussian 0.061 19.23 153.90 -
Arlington, US 45° Gaussian 0.002 0.133 59.69 -
Nyanpala, Ghana - Power 0.339 - 1.404 0.003
Khiva, Uzbekistan 45° Linear 0.541 - - 0.00028
Sindu, South Korea 75 Linear 0.385 - - 0.027

different algorithms and grid resolutions, using
ArcView 3.2.

Prior to the calculation of upslope area, the
‘sinks’ in the DEM were removed. Atrtificial sinks
in DEM are common, and they often cause
serious problems in calculating upslope areas
(Gallant and Wilson, 2000). We observed some
natural depressions in the glaciated landscape in
the Arlington and in the fluvial deposits in the
Khiva, but no further attempt was made to
distinguish real depressions from artificial sinks.
In order to estimate the flow routing processes, it
is important to include clear drainage boundaries
for each catchment (Moore et al, 1993b). The
Kongta, Magada, and Nayanpala data sets lack
clear drainage boundaries since the study areas
are nested within a much larger slope section.
We expect that this may cause some error in the
correlation between soil properties and the
calculated upslope area.

3) Statistical comparison

Some of the soil parameters examined show
positive skewness, and were transformed into a
logarithmic scale before correlation analyses
(Table 2). In addition, all calculated upslope area
values were transformed into a logarithmic scale
with base 10 prior to further statistical analyses.
Pearson’s r was primarily used to estimate the

association between calculated upslope area and
soil attributes, based on the assumption that both
transformed soil and terrain parameters are
normally distributed.

It is often necessary to compare the variability
of correlation coefficients and upslope area
values calculated for different data sets and grid
sizes. For this purpose, the coefficient of variation
(CV) was used, based on the following equation
(Beckett and Webster, 1971):

CV (%) = (standard deviation / mean) x 100

The main limitation of the CV to assess
variability is it is strongly influenced by the
normal distribution. Care should be taken to
interpret results, since some of the correlation
coefficients are derived from variables with a
non-normal distribution.

4. Results and discussion

1) Comparison of algorithms

(1) Spatial distribution and correlation

Figure 2 visualizes the spatial distribution of
different upslope areas calculated from the 10 m
grid DEM of the Tarrawarra catchment. The first
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Figure 2. Comparison of different upslope areas, where grid size is 10 m, calculated
with five different algorithms, at the Tarrawara catchment (Figure 1(a))

recognizable pattern is the clear difference
between single flow algorithms (D8 and Rho8)
and the others. Rho8 shows a highly scattered
distribution of upslope areas, which is caused by
the randomness of downslope direction
determination. Consequently, the Rho8 method
produced virtually non-interpretable results
(Figure 2(b)), despite the rounded and clear
surface topography of the catchment (Figure 1.
The D8 method also shows a rather scattered
pattern in the upslope area distribution, but
visualizes relatively clear high flow accumulation
along the valley position. The commonly
criticized parallel flow paths are also noticeable in
the valley (Figure 2(2)).

Unlike D8 and Rho8, the other three algorithms

(MFD, BRM, Dinf) produced comparable results
with a clear distinction between low and high
upslope areas of the valley. MFD resulted in a
much smoother distribution (Figure 2(c)),
whereas BRM and Dinf closely resemble each
other (Figures 2(d) and 2(e)). The ‘smoother’
upslope area for MFD may be caused by the
unlimited downslope flow dispersion (Quinn,
1991). In the correlation matrix of different
algorithms for selected grid sizes (Table 4), these
three methods are highly correlated with each
other (r > 0.85). The correlation coefficient
between BRM and Dinf is particularly high (r >
0.90), indicating that these two algorithms behave
quite similarly. These three methods show
consistent 7 values over a range of grid sizes.

-132 -



Infiuence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling

Table 4. Correlation coefficients between different
upslope contributing areas calcutated for the

Tarrawarra catchment.
D8 Rho8& MFD BRM Dinf

1m

D8 1

Rho8 0.29 1

MFD 0.61 0.35 1

BRM 0.54 032 0.87 i

Dinf 0.56 0.34 0.87 0.96 1
5m

D8 1

Rho8 0.40 1

MFD 0.70 0.50 1

BRM 0.69 0.51 0.85 1

Dinf 0.67 0.54 0.88 0.95 1
10m

D8 1

Rho8 0.48 1

MFD 0.75 056 1

BRM 0.74 0.57 0.85 1

Dinf 0.74 0.62 0.89 0.94 1
30 m

D8 1

Rho8 0.70 1

MFD 0.84 0.73 1

BRM 0.86 0.73 0.85 1

Dinf 0.81 0.80 0.88 0.90 1

note: All 7 values are significant at p < 0.01 level, if states
otherwise.

Upslope areas calculated by D8 and Rhos8,
however, are poorly correlated with those by
other methods at finer resolution, but the
coefficient (s increases with increasing grid size.

(2) Scale dependency of upslope area

calculation

Figure 3 compares the density distribution of
upslope area and the change over different grid
sizes examined at the Tarrawarra catchment. In
these density plots, there is again a significant
difference between D8/Rho8 and the other three
methods. D8 and Rho8 commonly show a ‘peak’
in the number of cells computed at the low end
of the upslope area. This peak becomes even
stronger with coarser grid size. It is already
known that the non-dispersive single flow algo-
rithms yield a2 much higher number of low ups-
lope areas, because many cells do not have a
flow (Wilson et al., 2000). Wilson ef al. (2000) fur-
ther observed that Rho8 produces a smaller ups-
lope area than D8, due to the breakup of linear
flow paths and improves flow concentration at
convergent slope sections.

The other three methods resemble each other
in the density distribution of the calculated
upslope area. The main difference between these
three methods is that BRM produced a relatively

Table 5. Mean and standard deviation (STD) of upslope area calculated for soil sampling points for each of eight DEM

7.5 10

5 20 30

Gidsze tm) 1 25 S 40 50 mean  STDCV (%)
_Ds mean 161 217 256 275 286 313 329 356 374 384 300 067 2280
STD 047 038 023 025 019 017 016 019 017 020 023 011 530
Rhos mean 128 192 236 264 278 309 328 360 379 397 292 081 2787
STD 045 039 019 022 012 015 015 018 014 014 020 015 637
MFD mean 211 258 288 310 320 342 357 380 396 406 331 059 1799
STD 045 039 028 026 021 020 016 019 018 021 026 012 504
;M mean 197 241 272 294 304 325 340 365 385 393 315 060 1937
STD 050 039 030 027 024 025 024 028 022 024 028 009 449
;5 . men 105 240 272 294 305 328 344 372 38 402 318 064 2033
sTD 052 041 030 026 022 020 019 016 015 024 012 550

0.20
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Figure 3. Density function of calculated upslope area at the Tarrawarra catchment (Figure 1(a)) for five different grid resolutions

high density of high upslope area at coarser
resolutions (figure not shown here). The increase
in the grid size is accompanied by an increase in
the average upslope area (Figure 3(f) for the
Tarrawarra and Figure 4(a) for all study areas).
Among the different algorithms, the mean
upslope area is the highest for MFD, followed by
BRM and Dinf. Rho8 shows the lowest mean

upslope area. In terms of variance within the
catchment, BRM shows the highest standard
deviation (Figure 4(b)), which is followed by
Dinf, MFD, D8, and Rho8. The difference of
mean upslope area between different algorithms
becomes smaller with increasing grid size (Figure
4(a)). This scale dependency of calculated
upslope area is in agreement with previous
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Figure 4. The distribution of mean (a) and standard deviation (b) of upsiope area for eight digital elevation modeis (DEM)
used in this research, where the upslope area was calculated for individual soil sampling points at each DEM.

comparisons (Beven and Kirky, 1979; Desmet
and Govers, 1995; Quinn et al, 1995; Tarboton,
1997).

Table 5 provides summary statistics of upslope
areas derived for all the soil-sampling points
within the eight data sets. It shows two
interesting comparisons regarding the scale
dependency of different algorithms. Firstly, CV
calculated for different algorithms show that MFD
has the lowest (18 %) variation across different
grid sizes. This suggests that MFD is the least
sensitive to the change of grid size. The CV
increases in the following order; BRM < Dinf <

D8 < Rho8. Since a high variation of upslope area
with the change of grid size is not a desirable
property for any terrain-based modeling, MFD
can be considered as the most robust and also
preferred method to estimate upslope areas.
Secondly, the average standard deviation of the
upslope area is relatively high with finer grid
sizes (i.e. less than 15 m), but remains constant
throughout coarser resolutions (Figure 4(b)).
Considering the standard deviation as an
indicator to differentiate flow routing elements
within the study sites, this indicates that highly
disaggregated topographical information is
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Table 6. Summary of the correlation coefficient (1) between different algorithms of upslope contributing area and soil parameters

Upslope  Grid size (m) 1 3 5 8 10 15 20 30 40 50
contributing
algorithm No. of cases 13 19 19 19 19 19 19 19 19 19
mean 0.06 0.09 0.07 0.05 0.08 0.08 0.09 0.09 0.08 0.06
D8 std 0.18 0.20 0.23 0.25 0.26 0.30 0.29 0.31 0.30 0.26
min -0.29 -0.28 -0.29 -0.34 -0.41 -0.36 -0.39 -0.36 -0.41 -0.40
max 0.31 0.59 0.66 0.66 0.67 0.70 0.70 0.69 0.59 0.49
mean -0.02 0.02 0.09 0.02 0.06 0.09 0.05 0.07 0.05 0.06
Rho8 std 0.06 0.12 0.19 0.20 0.20 0.28 0.23 0.29 0.25 0.26
min -0.17 -0.17 -0.26 -0.35 -0.27 -0.43 -0.30 -0.43 -0.36 -0.41
max 0.05 0.25 0.44 0.46 0.48 0.58 0.60 0.59 0.59 0.51
mean 0.10 0.07 0.08 0.09 0.09 0.09 0.10 0.08 0.09 0.08
MED std 0.31 0.28 0.31 0.34 0.34 0.37 0.36 0.38 0.37 0.38
min -0.43 -0.42 -0.42 -0.44 -0.44 -0.50 -0.47 -0.48 -0.49 -0.48
max 0.76 0.78 0.80 0.81 0.80 0.76 0.72 0.71 0.63 0.68
mean 0.09 0.03 0.07 0.08 0.11 0.11 0.11 0.10 0.10 0.10
BRM std 0.28 0.24 0.27 0.32 0.32 0.35 0.35 0.35 0.34 0.31
min -0.39 -0.38 -0.43 -0.45 -0.44 -0.47 -0.49 -0.50 -0.49 -0.48
max 0.76 0.78 0.78 0.80 0.78 0.79 0.75 0.60 0.62 0.62
mean 0.10 0.06 0.07 0.08 0.11 0.10 0.11 0.12 0.08 0.09
) std 0.26 0.23 0.26 0.30 031 0.35 0.34 0.39 0.33 0.34
Dinf )
min -0.28 -0.32 -0.38 -0.40 -0.40 -0.49 -0.49 -0.49 -0.52 -0.49
max 0.77 0.77 0.76 0.77 0.78 0.78 0.74 0.74 0.59 0.54

captured at less than 15 m grid size, but relatively
little difference is seen above this size. This
property has significant implications for
environmental correlations, which will be
discussed in the following section.

2) Correlation with soil attributes

Figure 5 shows correlations between upslope
contributing area and selected soil properties
from each soil data set. The average correlation
coefficients for 19 soil properties for different
algorithms and grid sizes are presented in Figure
8 and Table 6. Though the overall correlation
patterns are complicated and difficult to interpret,
some points are worth mentioning: 1) there is a
great difference in the correlation between soil
attributes and upslope area, but in general bigger

study areas show poorer environmental
correlation (e.g. Figures 5(f) and 5(g); 2) single
flow algorithms including D8 and Rho8 show
relatively low correlation coefficients, whereas
MFD vyields the highest correlation for most soil
attributes; and 3) there are reduced correlation
coefficients () at a scale of less than 15 m, and
higher rat 15-50 m grid resolutions.

(1) Magnitude of correlation coefficient

The soil attributes analyzed in this research
were selected based on the assumption that they
have a linear relationship with the potential
water flow estimated by the upslope area. This
assumption is supported by the linear relation-
ships found between individual soil attributes and
upslope area (see Figure 7 as example), even
though some of them show highly scattered pat-
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Figure 5. Environmental correlation between selected soil properties and grid-size algorithm to calculate upslope area.

The spatial distribution of each soil attributes corresponds with Figure 1. () Soil moisture, Tarrawarra catchment; (b) Clay
content, Quantock; (¢) Soil pH, Magada hillsope; (d) Loss-on-ignition, Arlington research station; (e) Clay content, Kongta
hillsope; (f) Clay content, Nayangpala; (g) Organic matters in the Khiva farm; (h) Soil moisture at the Sindu coastal dune.
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terns. The intensity of correlation is relatively
poor and varies greatly, depending on the study
area and the soil attributes selected (Table 6).
Interpretation of detailed pedological processes
explaining the varying correlation coefficient is
beyond the scope of this research, and may be
presented elsewhere.

In the comparison of environmental correlation,
the larger study areas show poorer environmental
correlation (Figure 6). Whereas the relatively
small study areas, including Tarrawarra, Arlington,
and Quantock, have relatively high correlation
coefficients (» > 0.5), the r values become much
lower for Khiva and Nayankpala. The smaller
study areas are mostly single hillslopes or micro-
catchments, whereas the bigger areas include sev-
eral hillslopes and catchments, with a greater het-
erogeneity of environmental factors within the
catchment. In their statistical modeling attempt to
characterize the land-use changes in a 100 km by
100 km area in Ghana, Park et al. (2005) first
observed that there was virtually no significant
spatial correlation between land-use change
intensity and various dynamic predictors of land-
use change. However, when they applied a spa-

tially disaggregated statistical model in which
land-use change intensity was regressed against
dependent variables within a variable-size mov-
ing window, significant spatial patterns of envi-
ronmental correlation appeared over the study
area. They argued that with increasing spatial
coverage within the regression model, land-use
change processes within the window tumed out
to be too diverse to establish clear trends. We
believe that a similar principle is also applicable
for soil-landscape analyses. Thus, the decrease in
correlation coefficient together with the increase
of the study area is also a result of the increase in
the heterogeneity of environmental factors.

(2) Comparison of different algorithms
The visual comparison of correlation
coefficients (e.g. Figure 8) leads us to conclude
that there are three groups of upslope area
algorithms in terms of intensity of soil-
environmental correlation. In general, the Rho8
method shows the lowest correlation coefficient
and erratic patterns, which comes from the
randomness of downslope direction determination.

D8 is much more stable than Rho8, but the
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Figure 7. Relationship between soil properties and upslope contributing area

() Soil moisture vs. 10 m multiple-flow direction method (MFD), Tarrawarra; (b) Clay content vs.
15 m MFD, Quantock; (c) Soil pH vs. 15 m Dinf, Magada; (d) Soil moisture content vs. 15 m MFD,
Arlington; (e) clay Content vs. 15 m Dinf, Kongta; and ) Soil moisture content vs. 30 m Dinf, Sindu.

correlation intensities are much lower than for the
other three methods. The clear distinction
between dispersion area and accumulation zone
in the single flow algorithms as well as the
parallel flow paths of D8 on the same slope
aspect may greatly reduce the intensity of
correlation.

In a comparison of the remaining three
methods, the MFD algorithm shows consistently
higher correlation coefficients than BRM and Dinf

for the majority of the soil attributes considered.
As was the case in the comparison of the
calculated upslope areas, the results of BRM and
Dinf resemble each other, which led to similar
correlation patterns with soil attributes. In
addition, the MFD method also shows the lowest
variation (CV) of correlation for the different data
sets (Figure 8(b)). The highest correlation
coefficient and the lowest CV lead us to conclude
that the MFD method works best for most of the
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Figure 8. Summary statistics of correlation intensity between different grid size and upsiope area algorithms

data sets, covering a wide range of environmental
conditions. Despite the often criticized problem
of the MFD method - overdispersion of flow
(Tarbonton, 1997) - this study shows that MFD is
the most adequate algorithm, not only as a result
of its robustness at different grid resolutions, but
also because of its consistently higher correlation

with soil attributes.

(3) Comparison of different grid size
Great differences can be observed in the corre-

lation between upslope contributing area and soil
attributes for different grid sizes across the study
sites. Some data sets attain maximum values at
10-20 m and decrease afterwards (see Figures
5(a), 5(e), 5(g)), whereas others maintain a stable
but higher 7 afterwards (see also Figure 5). Some
soil attributes show a progressive increase in r
with the increase in grid size (figure not shown
here). Considering the extreme diversity of soil,
topography, land management factors, and the
quality of the DEM, such a complex soil land-
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scape is an expected result. This well demon-
strates that an empirical functional relationship
derived from a specific grid size is not easy to
transfer to other grid sizes. The question of how
such functional relationships change with differ-
ent grid size and the question of spatial scale
deserve further investigation.

Considering the strong heterogeneity of envi-
ronmental correlation, we may draw our conclu-
sions regarding the optimum grid size from the
statistical summaries of all 19 soil attributes inves-
tigated. The comparison of the mean of the 19
correlation coefficients shows that fine spatial res-
olution (Jess than 15 m) actually reduces rvalues
for all algorithms considered (Figure 8(a)). This is
the pattern recognized in all individual soil attrib-
utes with little exception (Figure 5). This is a
rather contradictory result that has been discussed
in previous studies (Mitasova et al, 1996, Quinn
et al., 1995). Since the DEM from the Tarrawarra,
Quantock, Arlington, and Sindu study areas have
a sufficient number of field measurements with a
high vertical and horizontal accuracy (Table 1),
we can confidently eliminate the accuracy issues
of DEM. Instead, we interpret this finding as the
result of a discrepancy between the temporal
scale of the soils’ responses to given hillslope
processes governed by surface geometry.

Change within natural systems occurs at differ-
ent rates, and process scales may vary widely,
both in temporal and spatial dimensions. Adding
detailed model components is often not necessar-
ily better for modeling system behaviour as a
whole despite the resulting more realistic repre-
sentation of processes components (Beven,
1995). Therefore, it is important that the spatial
scale of data collection and terrain modeling
should match the scale of the area where the
processes are taking place (Bloschl and Sivapalan,
1995; Schulze, 2600). The response of soil prop-
erties to a given hydrological and geomorpholog-
ical process may be rather slow compared to

some minor topographical changes in cultivated
areas. As an example, small bunds or tillage
tracks that might change season after season will
be sufficiently included in very detailed DEM, and
such micro-topography results in the changes of
flow paths calculated from DEM. However, the
spatial distribution of individual soil properties
over the hillslope will not respond to such short-
term topographical changes. Therefore, DEM and
terrain parameters should be sufficiently large to
override the influence of micro-topography (and
also possible measurement errors) in the calcula-
tion of flow movements. This observation led us
to conclude that highest resolution of DEM may
not be necessary for generating useful soil-land-
scape models.

The comparison of the average r values and
their variation (Figure 8) reveals that the average
r reaches a maximum at around 15 m grid size
and then remains similar until the 50 m grid size.
On the other hand, the CV of the correlation
coefficients for the different data sets reaches a
minimum at 15 m grid size, and is sustained at
this level despite increasing grid size. This is a
clear indication that the environmental correlation
between soil attributes and upslope area is
insensitive to different grid size beyond the 15 m
grid resolution, possibly due to the diffusive
nature of the soil spatial distribution and soil's
slow response to the water flow potential
estimated by the upslope area. This observation
gives great freedom to soil-landscape modelers,
who often experience difficulties in acquiring a
detailed DEM. A similar conclusion was drawn
from a recent investigation on accuracy issues of
DEM in Minnesota, USA, by Thompson et al.
(2001).

On the other hand, it should also be noted that
the coarser grid resolution often leads to a
smoothening surface topography and a loss of
interpretable topographical representation (Zhang
and Montgomery, 1994; Hutchinson and Gallant,
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2000; Wilson and Gallant, 2000). The most
appropriate DEM grid size for topographically
driven hydrological and geomorphological
models is somewhat finer than the hillslope scale
identified in the field and sufficient to include
necessary topographical details (Zhang and
Montgomery, 1994). In contrast to the reduced
correlation coefficient, we also observed that the
correlation coefficient drops for some soil
attributes after 15-30 m grid size (see Figure 5).
Therefore, we propose that a 15 to 30 m grid
resolution might be a good compromise to adopt
as an optimum grid size, both in terms of
environmental correlation and for maintaining
necessary topographical details in further
modeling.

5. Conclusions

The influence of horizontal resolutions of DEM
and algorithms to calculate upslope area was
investigated in a soil-landscape analysis using 19
soil attributes from eight different soil-terrain data
sets from systems encompassing a coast and
inlands around the world. There was a great
difference in the correlation between soil
attributes and upslope contributing area, but in
general, larger study areas showed poorer
environmental correlation due to the additional
heterogeneity of environmental factors included
in such areas. For environmental correlation
between soil attributes and upslope area, the
multiple flow algorithm (Freeman, 1991; Quinn et
al., 1991) outperformed the other four methods
compared in this study, both in terms of
correlation intensity and in the scale insensitivity
to different grid sizes. There were reduced
correlation coefficients at finer scales of less than
15 m, and r was generally highest for the range
between 15-50 m grid sizes. The reduced

correlation coefficients at the very fine grid size
are contradictory to common belief that higher
accuracy of DEM is better. We interpret this as a
result caused by the discrepancy in the temporal
scale of soil responses to given hillslope processes
governed by surface geometry. Considering the
necessary topographical details governed by the
size of grid and environmental correlation with
soil attributes, we propose that a 15-30 m grid
resolution may be the optimum size range for
future soil-landscape analyses.

We also acknowledge that, in addition to the
scale effect, the accuracy of DEM itself can also
significantly influence results of soil-landform
modeling (Bolstad and Stowe, 1994; Holmes et
al., 2000). For example, Oksanen and Sarjakoski
(2005) performed a GIS analysis-based drainage
basin delineation to find that such an approach
was very sensitive to uncertainties in DEM
acquired. Incorporation of both scale and accura-
cy issues associated with DEM is thus expected to
significantly contribute to the literature of soil-
landscape analysis.
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