• 제목/요약/키워드: dispersion method

검색결과 1,627건 처리시간 0.027초

1-Octanethiol이 코팅된 나노 구리 분말을 이용한 나노 잉크의 분산도에 대한 연구 (Investigation of Dispersion Stability of Conductive Nano Ink Using 1-Octanethiol Coated Copper Nano Powders)

  • 조단이;백종환;박중학;이선영
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.417-422
    • /
    • 2012
  • Copper nano particles have been considered as the materials for conductive ink due to its good thermal, electrical conductivity and low cost. However, copper nanoparticles oxidize easily, decreasing dispersion stability and electrical conductivity. Therefore, it is important to develop a method to minimize oxidation of copper nano particles to improve its dispersion stability property in copper nano ink. In this study, copper nano particles were coated with 1-Octanethiol VSAM(Vaporized Self Assembled Multilayers) to prevent oxidation and coated copper powders were dispersed in conductive ink successfully by studying its relationship of different chain length of solvents to 1-Octanethiol coating layer to fabricate nano ink. Various alcohol solvents, such as 1-Hexanol, 1-Octanol, and 1-Decanol were used. The coating layer was observed using FESEM and TEM. Furthermore, dispersion of copper nano particles in nano inks, was characterized using Turbiscan analyzer, viscometer, and contact angle measurement tool.

의약품의 용출에 관한 연구(제23보)-폴리에틸렌글리콜 고체분산계로부터 케토푸로펜의 용출- (Studies on Dissolution Rate of Drugs(XXIII)-Ketoprofen-Polyethyleneglycol Solid Dispersion System-)

  • 김지호;서성훈;김수억
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권1호
    • /
    • pp.11-22
    • /
    • 1991
  • The purpose of this study was for the enhancement of dissolution rate of ketoprofen. The solid dispersions composed of ketoprofen(KP) and polyethylene glycol(PEG) 4000 or 6000 were prepared by fusion method at various ratios of KP to PEG (0.5 : 10, 1 : 10, 2 : 10, 3 : 10 and 4 : 10(w/w)) and their physical mixtures were also prepared at the above ratios. Dissolution tests, X-ray diffraction study and differential scanning calorimetry study were carried out. It was found that the dissolution rates of solid dispersion and physical mixture at any ratio of the two components discribed above were greater than that of the pure ketoprofen. X-ray diffraction studies of ketoprofen suggested that less than 1 to 10 ratio of ketoprofen to PEG4000 (or 6000) was required to dispersion amorphous state in the carrier. In addition, the studies of DSC showed that ketoprofen had a sharp endothermic peak at $94^{\circ}C$ but not for the solid dispersion at the same temperature.

  • PDF

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.

Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core

  • Lee, Yong Soo;Lee, Chung Ghiu;Jung, Yongmin;Oh, Myoung-kyu;Kim, Soeun
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.567-574
    • /
    • 2016
  • We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a double line defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it is demonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427 ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersion coefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at 1.55 μm is 1.92 × 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (covering O to U bands) is about 1.8 × 10-2 to 1.92 × 10-2. It is confirmed that from the simulation results, the confinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber rings of air holes in the cladding.

생체분자 분리를 위한 Fe3O4 나노입자의 표면수식과 분산 안정성 향상 (Functionalization of Fe3O4 Nanoparticles and Improvement of Dispersion Stability for Seperation of Biomolecules)

  • 김민정;안국환;임보라미;김희택;좌용호
    • 한국분말재료학회지
    • /
    • 제14권4호
    • /
    • pp.256-260
    • /
    • 2007
  • The surface of magnetite ($Fe_{3}O_{4}$) nanoparticles prepared by coprecipitation method was modified by carboxylic acid group of poly(3-thiophenacetic acid (3TA)) and meso-2,3-dimercaptosuccinic acid (DMSA). Then the lysozyme protein was immobilized on the carboxylic acid group of the modification of the magnetite nanoparticles. The magnetite nanoparticles are spherical and the particle size is approximately 10 nm. We measured quantitative dispersion state by dispersion stability analyzer for each $Fe_{3}O_{4}$ nanoparticles with and without surface modification. The concentration of lysozyme on the modified magnetite nanoparticles was also investigated by a UV-Vis spectrometer and compared to that of magnetite nanoparticles without surface modification. The functionalized magnetite particles had higher enzymatic capacity and dispersion stability than non-functionalized magnetite nanoparticles.

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.

비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성 (Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent)

  • 나호성;박민경;임형미;김대성
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

난류특성을 이용한 대기오염확산모델의 예측능에 관한 연구 (A Study on the Predictability of the Air Pollution Dispersion Model Composed of the Turbulent Parameters)

  • 박기학;윤순창
    • 환경영향평가
    • /
    • 제10권2호
    • /
    • pp.123-133
    • /
    • 2001
  • Gaussian dispersion model is the most widely used tool for the ground level air pollution simulation. Though in spite of the convenience there are important problems on the Pasquill- Gifford' stability classification scheme which was used to define the turbulent state of the atmosphere or to describe the dispersion capabilities of the atmosphere which was each covers a broad range of stability conditions, and that they were very site specific, and the vertical dispersion calculation formula on the case of the unstable atmospheric condition. This paper was carried out to revise the Gaussian dispension model for the purposed of increase the modeling performance and propose the revised model, which was composed of the turbulent characteristics in the unstable atmospheric conditions. The proposed models in this study were composed of the profile method, Monin-Obukhove length, the probability density function model and the lateral dispersion function which was composed of the turbulent parameters, $u_*$(friction velocity), $w_*$(convective velocity scale), $T_L$(lagrangian time scale) for the model specific. There were very good performance results compare with the tracer experiment result on the case of the short distance (<1415m) from the source, but increase the simulation error(%) to stand off the source in the all models. In conclusion, the revised Gaussian dispersion model using the turbulent characteristics may be a good contribution for the development of the air pollution simulation model.

  • PDF

상호 위상 변조에 의해 왜곡된 WDM 신호의 Mid-Span Spectral Inversion을 이용한 보상 (Compensation of Distorted WDM signals due to Cross Phase Modulation Effects using Mid-Span Spectral Inversion)

  • 이성렬
    • 한국항행학회논문지
    • /
    • 제7권2호
    • /
    • pp.128-134
    • /
    • 2003
  • 광섬유의 색 분산과 자기 위상 변조 외에 상호 위상 변조 효과에 의해 왜곡된 WDM 채널 신호가 MSSI(Mid-Span Spectral Inversion) 기법을 통해 전송 거리에 따라 보상되는 정도를 다양한 광섬유 분산 계수를 고려하여 분석해 보았다. 본 연구에서 고려된 시스템은 전체 전송로의 중간에 비선형 매질로 HNL-DSF (Highly nonlinear dispersion shifted fiber)를 갖는 광 위상 공액기를 두고, 광 위상 공액기를 중심으로 첫 번째 전송 구간에서의 평균 강도와 두 번째 전송 구간에서의 평균 강도를 같게 하는 PAIA (Path Averaged Intensity Approximation) 방식의 MSSI 기법을 채택한 $3{\times}40$ Gbps 강도 변조 직접 검파 방식의 WDM 시스템이다. XPM에 의한 왜곡의 보상 측면에서 광섬유의 분산 계수가 비교적 큰 WDM 시스템일수록 MSSI 기법이 더욱 효과적으로 적용되어 전송 거리를 신장시킬 수 있는 것을 확인할 수 있었다. 또한 색 분산, SPM 외에 XPM의 영향을 받아 왜곡된 채널 신호는 MSSI 기법을 통해 광섬유의 분산 계수가 큰 시스템에서 더욱 안정되게 보상된다는 것을 알 수 있었다.

  • PDF

Effects of Viscosity on Dispersion Stability of Nano CoAl2O4 Ceramic Ink

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.497-501
    • /
    • 2015
  • Inkjet printing is a widespread technology, offering advantages such as high-quality decoration, a continuous process, and the accurate direct reproduction of patterns or pictures. In inkjet printing technology, the dispersion stability of ceramic ink is one of the most important factors. In this study, the dispersion stability of blue $CoAl_2O_4$ ink for ceramic inkjet printing is systematically investigated. Blue $CoAl_2O_4$ pigment was synthesized by a solid-state reaction and then milled to less than 300nm in size. In order to investigate the influence of the viscosity on the dispersion stability, two types of $CoAl_2O_4$ ceramic inks (termed here Blue L and Blue H) were prepared using different volume ratios of ethylene glycol and ethanol. The Blue L and Blue H ink solutions contained cetyltrimethylammonium bromide(CTAB) as a dispersive agent. The viscosity, surface tension and jetting stability of the $CoAl_2O_4$ ceramic inks were analyzed using a rheometer, a surface tension meter and a dropwatcher. The dispersion stability of the $CoAl_2O_4$ ceramic ink was investigated by a multiple light-scattering method. Blue H, a ceramic ink with higher viscosity, showed much better dispersion stability than the Blue L ceramic ink.