• Title/Summary/Keyword: disease gene

Search Result 2,618, Processing Time 0.034 seconds

XRCC1 Arg399Gln Gene Polymorphism and Hepatocellular Carcinoma Risk in the Chinese Han Population: A Meta-analysis

  • Duan, Wei-Hong;Zhu, Zhen-Yu;Liu, Jun-Gui;Dong, Mao-Sheng;Chen, Jun-Zhou;Liu, Quan-Dda;Xie, Yu;Sun, Ti-Ye;Gao, Ze-Feng;Zhou, Ning-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3601-3604
    • /
    • 2012
  • Purpose: Numerous studies have evaluated the association between XRCC1 Arg399Gln gene polymorphism and hepatocellular carcinoma risk in the Chinese Han population. However, the results have been inconsistent. We therefore here examined whether the XRCC1 Arg399Gln gene polymorphism confers hepatocellular carcinoma risk by conducting a meta-analysis. Methods: PubMed, Google scholar and China National Knowledge Infrastructure databases were searched for eligible articles in English and Chinese that were published before April 2012. Results: 6 studies involving 1,246 patients with hepatocellular carcinoma and 1,953 controls were included. The association between XRCC1 Arg399Gln gene polymorphism and hepatocellular carcinoma in the Chinese Han population was significant under GG vs AA (OR = 1.48, 95% CI = 1.13 to 1.94). Limiting the analysis to the studies with controls in the Hardy-Weinberg equilibrium, the results were persistent and robust. Conclusions: In the Chinese Han population, the XRCC1 Arg399Gln gene polymorphism is associated with an increased hepatocellular carcinoma risk.

Novel pan-lineage VP1 specific degenerate primers for precise genetic characterization of serotype O foot and mouth disease virus circulating in India

  • Sagar Ashok Khulape;Jitendra Kumar Biswal;Chandrakanta Jana;Saravanan Subramaniam;Rabindra Prasad Singh
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.40.1-40.6
    • /
    • 2023
  • Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

Vector Construction and Transformation of Ginseng (Panax ginseng C.A. Meyer) Using Disease Resistant Genes (내병성 관련유전자의 운반체 재조합 및 인삼(Panax ginseng C.A. Meyer)의 형질전환)

  • Yang, Deok-Chun;Lee, Eun-Kyung;Kim, Moo-Sung
    • Journal of Ginseng Research
    • /
    • v.27 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • For study about introduce of gene connected with disease and transformation system of gingseng, chitinase gene cloned from soybene and disease resistant gene were carried out for expression and transformation of plant using Agrobacterium. The disease resistance gene(DR-49), 35S-35S-AMV, has been constructed. The disease resistance gene and chitinase gene were introduced into the binary vector pRD 400, which were mobilized into Agrobacterium tumefaciens faciens strain MP 90 and LBA 4404 harboring disarmed Ti-plasmid. As a result of induce transformants using ginseng embryo and petiole, multi shoots were formed on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin. Also transformation by cotyledonwas effective on MS medium supplemented 1 mg/ι 2,4-D and 0.5 mg/ι kinetin, transformation percent of disease resistant gene and chitinase gene were showed 18%, 14% respectively. As transformed tissue is under pre-embryoid condition, normal shoot is required through the process of matured embryo.

Human intronless disease associated genes are slowly evolving

  • Agarwal, Subhash Mohan;Srivastava, Prashant K.
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.356-360
    • /
    • 2009
  • In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower $K_{a}$ and $K_{a}/K_{s}$ while $K_{s}$ although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Novel Therapeutic Approaches to Mucopolysaccharidosis Type III

  • Yang, Aram
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan-inherited lysosomal storage disease. It is one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterized by intellectual regression, behavioral and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has been approved. Here, we review the curative therapy developed for MPS III, from historically ineffective hematopoietic stem cell transplantation and substrate reduction therapy to the promising enzyme replacement therapy or adeno-associated/lentiviral vector-mediated gene therapy. Preclinical studies are presented with recent translational first-in-man trials. We also present experimental research with preclinical mRNA and gene-editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of early therapy before extensive neuronal loss. Disease-modifying therapy for MPS III will likely mandate the development of new early diagnosis strategies.

Therapeutic applications of gene editing in chronic liver diseases: an update

  • Shin, Ji Hyun;Lee, Jinho;Jung, Yun Kyung;Kim, Kyeong Sik;Jeong, Jaemin;Choi, Dongho
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.251-258
    • /
    • 2022
  • Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

Molecular Mechanism of Plant Immune Response (식물체의 면역반응 기작)

  • Kwon Tack-Min;Nam Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.73-83
    • /
    • 2005
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products and sequential signal transduction pathways activating defense responses are rapidly triggered. As a results, not only exhibit a resistance against invading pathogens but also plants maintain the systemic acquired resistance (SAR) to various other pathogens. This molecular interaction between pathogen and plant is commonly compared to innate immune system of animal. Recent studies arising from molecular characterization of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on molecular mechanism of gene-for-gene interaction. Furthermore, new technologies of genomics and proteomics make it possible to monitor the genome-wide gene regulation and protein modification during activation of disease resistance, expanding our ability to understand the plant immune response and develop new crops resistant to biotic stress.

Development of transgenic disease-resistant root stock for the growth of watermelon

  • Cho, Song-Mi;Chung, Soo-Jin;Moon, Sun-Jin;Kim, Kwang-Sang;Kim, Young-Cheol;Cho, Baik-Ho
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.62-65
    • /
    • 2004
  • To protect the watermelon against soil-borne pathogens, we are currently producing disease-resistant transgenic root stock for the growth of watermelon, A defensin gene (J1-1) from Capsicum annum, a ACC deaminase gene from Pseudomonas syringae, a galactinol synthase (CsGolS) gene from Cucumis sativus, and a WRKY (CvWRKY2) gene from Citullus vulgaris were used as transgenes for disease resistance. The gene were transformed into a inbred line (6-2-2) of watermelon, Kong-dae watermelon and a inbred line (GO702S) of gourd, respectively, by Agrobacterium-mediated transformation. Putative transgenic plants were selected in medium containing 100mg/L kanamycin, and then integration of the genes into the genomic DNA were demonstrated by PCR analysis. Successful integration of the gene in regenerated plants was also confirmed by PCR (Figf 1), genomic Southern blot (Fig 2), RT-PCR (Fig 3), and Northern blot analysis(Fig 4). Several T1 lines having different transgene were produced, and disease resistance of the T1 lines are under estimation.

  • PDF