Browse > Article

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen  

Lee, Soo-Yeon (Department of Life Science, Ewha Womans University)
Choi, Yeon-Ju (Department of Life Science, Ewha Womans University)
Ha, Young-Mie (Research Institute for Basic Sciences, Yonsei University)
Lee, Dong-Hee (Department of Life Science, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 130-137 More about this Journal
Abstract
A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.
Keywords
Disease resistance gene; apple; TIR-NBS-LRR (Toll Interleukin 1 Receptor-Nucleotide Binding Site-Leucine Rich Repeat); ectopic expression;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Baldi, P., A. Patocchi, E. Zini, C. Toller, R. Velasco, and M. Komjanc. 2004. Cloning and linkage mapping of resistance gene homologues in apple. Theor. Appl. Genet. 109: 231- 239   DOI   ScienceOn
2 Bent, A. F. 1996. Plant disease resistance gene: Function meets structure. Plant Cell 8: 1757-1771   DOI   ScienceOn
3 Dayton, D. F., J. B. Mowry, L. F. Hought, C. H. Bailey, E. B. Williams, J. Janick, and E. F. H. 1970. Prima: An early fall red apple with resistance to apple scab. Fruit Var. Hortic. Dig. 24: 20-22
4 Dicko, M. H., M. J. Searle-van Leeuwen, A. S. Traore, R. Hilhorst, and G. Beldman. 2001. Polysaccharide hydrolases from leaves of Boscia senegalensis: Properties of endo-(1-3)- beta-D-glucanase. Appl. Biochem. Biotechnol. 94: 225-241   DOI   ScienceOn
5 Ding, C. K., C. Y. Wang, K. C. Gross, and D. L. Smith. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895-901   DOI   ScienceOn
6 Jirage, D., T. L. Tootle, T. L. Reuber, L. N. Frost, B. J. Feys, J. E. Parker, F. M. Ausubel, and J. Glazebrook. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96: 13583-13588
7 Kim, J. S., H. Yun, H. U. Kim, H. S. Choi, T. Y. Kim, H. M. Woo, and S. Y. Lee. 2006. Resources for systems biology research. J. Microbiol. Biotechnol. 16: 832-848   과학기술학회마을
8 Lee, S. Y. and D. H. Lee. 2005. Expression of the MbR4, a TIR-NBS type of apple R gene, confers resistance to bacterial spot disease in Arabidopsis. J. Plant Biol. 48: 220- 228   과학기술학회마을   DOI
9 Li, J., L. Shan, J. M. Zhou, and X. Tang. 2002. Overexpression of Pto induces a salicylate-independent cell death but inhibits necrotic lesions caused by salicylate-deficiency in tomato plants. Mol. Plant Microbe Interact. 15: 654-661   DOI   ScienceOn
10 Parniske, M., K. E. Hanmmond-Kosack, C. Golstein, C. M. Thomas, D. A. Jones, K. Harrison, B. B. Wulff, and J. D. Jones. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821-832   DOI   ScienceOn
11 Wu, K., L. Tian, J. Hollingworth, D. C. Brown, and B. Miki. 2002. Functional analysis of omato Pti4 in Arabidopsis. Plant Physiol. 128: 30-37   DOI   ScienceOn
12 Zou, H., W. J. Henzel, X. Liu, A. Lutschg, and X. Wang. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413   DOI   ScienceOn
13 Zhang, Y., S. Goritschnig, X. Dong, and X. Li. 2003. A gainof- function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646   DOI   ScienceOn
14 Tang, X., M. Xie, Y. J. Kim, J. Zhou, D. F. Klessig, and G. B. Martin. 1999. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11: 15- 29   DOI   ScienceOn
15 Aarts, M. G., B. te Lintel Hekkert, E. B. Holub, J. L. Beynon, W. J. Stiekema, and A. Pereira. 1998. Identification of Rgene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant Microbe Interact. 11: 251-258   DOI   ScienceOn
16 Yu, Y. G., G. R. Buss, and M. A. Maroof. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93: 11751-11756
17 Kachroo, P., J. Shanklin, J. Shah, E. J. Whittle, and D. F. Klessig. 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA 98: 9448-9453
18 Xiao, F., X. Tang, and J. M. Zhou. 2001. Expression of 35S::Pto globally activates defense-related genes in tomato plants. Plant Physiol. 126: 1637-1645   DOI   ScienceOn
19 Whalen, M. C., R. W. Innes, A. F. Bent, and B. J. Staskawicz. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3: 49-59   DOI   ScienceOn
20 Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549   과학기술학회마을
21 Tai, T. H., D. Dahlbeck, E. T. Clark, P. Gajiwala, R. Pasion, M. C. Whalen, R. E. Stall, and B. J. Staskawicz. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153-14158
22 Lee, S. Y., J. S. Seo, M. Rodriguez-Lanetty, and D. H. Lee. 2003. Comparative analysis of superfamilies of NBSencoding disease resistance gene analogs in cultivated and wild apple species. Mol. Genet. Genom. 269: 101-108
23 Leister, D., A. Ballvora, F. Salamini, and C. Gebhardt. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14: 421-429   DOI   ScienceOn
24 Simpson, C. L., P. M. Giffard, and N. A. Jacques. 1993. A method for the isolation of RNA from Streptococcus salivarius and its application to the transcriptional analysis of the gtfJK locus. FEMS Microbiol. Lett. 108: 93-97   DOI   ScienceOn
25 Crandall, C. S. 1926. Apple breeding at the University of Illinois. III. Agric. Exp. Sm. Bull 275: 341-600
26 Meyers, B. C., D. B. Chin, K. A. Shen, S. Sivaramakrishnan, D. O. Lavelle, Z. Zhang, and R. W. Michelmore. 1998. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10: 1817-1832   DOI   ScienceOn
27 Hehl, R., E. Faurie, J. Hesselbach, and F. Salamini. 1999. TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor. Appl. Genet. 98: 379-386   DOI   ScienceOn
28 Lee, B. Y., J. H. Lee, H. S. Yoon, K. H. Kang, K. N. Kim, J. H. Kim, J. K. Kim, and J. K. Kim. 2005. Expression of human interleukin-11 and granulocyte-macrophage colonystimulating factor in transgenic plants. J. Microbiol. Biotechnol. 15: 1304-1309   과학기술학회마을
29 Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, D. Corr, and B. Baker. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115   DOI   ScienceOn
30 Vinatzer, B. A., A. Patocchi, L. Gianfranceschi, S. Tartarini, H. B. Zhang, C. Gessler, and S. Sansavini. 2001. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol. Plant Microbe Interact. 14: 508-515   DOI   ScienceOn
31 Xiao, F., M. Lu, J. Li, T. Zhao, S. Y. Yi, V. K. Thara, X. Tang, and J. M. Zhou. 2003. Pto mutants differentially activate Prf-dependent, avrPto-independent resistance and gene-for-gene resistance. Plant Physiol. 131: 1239-1249   DOI   ScienceOn
32 Dellagi, A., J. Helibronn, A. O. Avrova, M. Montesano, E. T. Palva, H. E. Stewart, I. K. Toth, D. E. Cooke, G. D. Lyon, and P. R. Birch. 2000. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol. Plant Microbe Interact. 13: 1092-1101   DOI   ScienceOn