Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon (Department of Life Science, Ewha Womans University) ;
  • Choi, Yeon-Ju (Department of Life Science, Ewha Womans University) ;
  • Ha, Young-Mie (Research Institute for Basic Sciences, Yonsei University) ;
  • Lee, Dong-Hee (Department of Life Science, Ewha Womans University)
  • Published : 2007.01.31

Abstract

A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

Keywords

References

  1. Aarts, M. G., B. te Lintel Hekkert, E. B. Holub, J. L. Beynon, W. J. Stiekema, and A. Pereira. 1998. Identification of Rgene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant Microbe Interact. 11: 251-258 https://doi.org/10.1094/MPMI.1998.11.4.251
  2. Baldi, P., A. Patocchi, E. Zini, C. Toller, R. Velasco, and M. Komjanc. 2004. Cloning and linkage mapping of resistance gene homologues in apple. Theor. Appl. Genet. 109: 231- 239 https://doi.org/10.1007/s00122-004-1624-x
  3. Bent, A. F. 1996. Plant disease resistance gene: Function meets structure. Plant Cell 8: 1757-1771 https://doi.org/10.1105/tpc.8.10.1757
  4. Crandall, C. S. 1926. Apple breeding at the University of Illinois. III. Agric. Exp. Sm. Bull 275: 341-600
  5. Dayton, D. F., J. B. Mowry, L. F. Hought, C. H. Bailey, E. B. Williams, J. Janick, and E. F. H. 1970. Prima: An early fall red apple with resistance to apple scab. Fruit Var. Hortic. Dig. 24: 20-22
  6. Dellagi, A., J. Helibronn, A. O. Avrova, M. Montesano, E. T. Palva, H. E. Stewart, I. K. Toth, D. E. Cooke, G. D. Lyon, and P. R. Birch. 2000. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol. Plant Microbe Interact. 13: 1092-1101 https://doi.org/10.1094/MPMI.2000.13.10.1092
  7. Dicko, M. H., M. J. Searle-van Leeuwen, A. S. Traore, R. Hilhorst, and G. Beldman. 2001. Polysaccharide hydrolases from leaves of Boscia senegalensis: Properties of endo-(1-3)- beta-D-glucanase. Appl. Biochem. Biotechnol. 94: 225-241 https://doi.org/10.1385/ABAB:94:3:225
  8. Ding, C. K., C. Y. Wang, K. C. Gross, and D. L. Smith. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895-901 https://doi.org/10.1007/s00425-001-0698-9
  9. Hehl, R., E. Faurie, J. Hesselbach, and F. Salamini. 1999. TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor. Appl. Genet. 98: 379-386 https://doi.org/10.1007/s001220051083
  10. Jirage, D., T. L. Tootle, T. L. Reuber, L. N. Frost, B. J. Feys, J. E. Parker, F. M. Ausubel, and J. Glazebrook. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96: 13583-13588
  11. Kachroo, P., J. Shanklin, J. Shah, E. J. Whittle, and D. F. Klessig. 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA 98: 9448-9453
  12. Kim, J. S., H. Yun, H. U. Kim, H. S. Choi, T. Y. Kim, H. M. Woo, and S. Y. Lee. 2006. Resources for systems biology research. J. Microbiol. Biotechnol. 16: 832-848
  13. Lee, B. Y., J. H. Lee, H. S. Yoon, K. H. Kang, K. N. Kim, J. H. Kim, J. K. Kim, and J. K. Kim. 2005. Expression of human interleukin-11 and granulocyte-macrophage colonystimulating factor in transgenic plants. J. Microbiol. Biotechnol. 15: 1304-1309
  14. Lee, S. Y. and D. H. Lee. 2005. Expression of the MbR4, a TIR-NBS type of apple R gene, confers resistance to bacterial spot disease in Arabidopsis. J. Plant Biol. 48: 220- 228 https://doi.org/10.1007/BF03030411
  15. Lee, S. Y., J. S. Seo, M. Rodriguez-Lanetty, and D. H. Lee. 2003. Comparative analysis of superfamilies of NBSencoding disease resistance gene analogs in cultivated and wild apple species. Mol. Genet. Genom. 269: 101-108
  16. Leister, D., A. Ballvora, F. Salamini, and C. Gebhardt. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14: 421-429 https://doi.org/10.1038/ng1296-421
  17. Li, J., L. Shan, J. M. Zhou, and X. Tang. 2002. Overexpression of Pto induces a salicylate-independent cell death but inhibits necrotic lesions caused by salicylate-deficiency in tomato plants. Mol. Plant Microbe Interact. 15: 654-661 https://doi.org/10.1094/MPMI.2002.15.7.654
  18. Meyers, B. C., D. B. Chin, K. A. Shen, S. Sivaramakrishnan, D. O. Lavelle, Z. Zhang, and R. W. Michelmore. 1998. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10: 1817-1832 https://doi.org/10.1105/tpc.10.11.1817
  19. Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  20. Parniske, M., K. E. Hanmmond-Kosack, C. Golstein, C. M. Thomas, D. A. Jones, K. Harrison, B. B. Wulff, and J. D. Jones. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821-832 https://doi.org/10.1016/S0092-8674(00)80470-5
  21. Simpson, C. L., P. M. Giffard, and N. A. Jacques. 1993. A method for the isolation of RNA from Streptococcus salivarius and its application to the transcriptional analysis of the gtfJK locus. FEMS Microbiol. Lett. 108: 93-97 https://doi.org/10.1111/j.1574-6968.1993.tb06079.x
  22. Tai, T. H., D. Dahlbeck, E. T. Clark, P. Gajiwala, R. Pasion, M. C. Whalen, R. E. Stall, and B. J. Staskawicz. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153-14158
  23. Tang, X., M. Xie, Y. J. Kim, J. Zhou, D. F. Klessig, and G. B. Martin. 1999. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11: 15- 29 https://doi.org/10.1105/tpc.11.1.15
  24. Vinatzer, B. A., A. Patocchi, L. Gianfranceschi, S. Tartarini, H. B. Zhang, C. Gessler, and S. Sansavini. 2001. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol. Plant Microbe Interact. 14: 508-515 https://doi.org/10.1094/MPMI.2001.14.4.508
  25. Whalen, M. C., R. W. Innes, A. F. Bent, and B. J. Staskawicz. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3: 49-59 https://doi.org/10.1105/tpc.3.1.49
  26. Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, D. Corr, and B. Baker. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115 https://doi.org/10.1016/0092-8674(94)90283-6
  27. Wu, K., L. Tian, J. Hollingworth, D. C. Brown, and B. Miki. 2002. Functional analysis of omato Pti4 in Arabidopsis. Plant Physiol. 128: 30-37 https://doi.org/10.1104/pp.010696
  28. Xiao, F., M. Lu, J. Li, T. Zhao, S. Y. Yi, V. K. Thara, X. Tang, and J. M. Zhou. 2003. Pto mutants differentially activate Prf-dependent, avrPto-independent resistance and gene-for-gene resistance. Plant Physiol. 131: 1239-1249 https://doi.org/10.1104/pp.016113
  29. Xiao, F., X. Tang, and J. M. Zhou. 2001. Expression of 35S::Pto globally activates defense-related genes in tomato plants. Plant Physiol. 126: 1637-1645 https://doi.org/10.1104/pp.126.4.1637
  30. Yu, Y. G., G. R. Buss, and M. A. Maroof. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93: 11751-11756
  31. Zhang, Y., S. Goritschnig, X. Dong, and X. Li. 2003. A gainof- function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646 https://doi.org/10.1105/tpc.015842
  32. Zou, H., W. J. Henzel, X. Liu, A. Lutschg, and X. Wang. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413 https://doi.org/10.1016/S0092-8674(00)80501-2