• Title/Summary/Keyword: discrete-time models

Search Result 238, Processing Time 0.027 seconds

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

Updating Algorithms using a Galois-Lattice Structure for Building and Maintaining Object-Oriented Analysis Models (Galois-격자 구조를 이용한 객체지향 분석 모델 구축과 유지에 관한 갱신 알고 리즘)

  • Ahn, Hi-Suck;Jun, Moon-Seog;Rhew, Sung-Yul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.4
    • /
    • pp.477-486
    • /
    • 1995
  • This paper describes and constructs object-oriented analysis models using Galois-lattices that we are always studying in discrete mathematics, shows fundamental approaches to maintain the models, analyzes the construction of object-oriented analysis models through good examples. Also, we define several properties of Galois-lattices that have binary relations between class objects, propose the incremental updating algorithms that can update the Galois-lattice whenever new classes are added. This proposal shows that in case of adding new class nodes the results from simulations can implement in constant time and have linearly the incremental structures in worst cases, and in that the growth rate of lattices is proportioned to class nodes in time complexity. This results can achieve the high understandability of object-oriented analysis models and the high traceability of maintenance models. Furthermore it is possible to make more efficient performances of class reusability in advantages of object-oriented systems and support truly the class hierarchical maintenances.

  • PDF

PERIODIC SENSING AND GREEDY ACCESS POLICY USING CHANNEL MODELS WITH GENERALLY DISTRIBUTED ON AND OFF PERIODS IN COGNITIVE NETWORKS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.129-136
    • /
    • 2014
  • One of the fundamental issues in the design of dynamic spectrum access policy is the modeling of the dynamic behavior of channel occupancy by primary users. Under a Markovian modeling of channel occupancy, a periodic sensing and greedy access policy is known as one of the simple and practical dynamic spectrum access policies in cognitive radio networks. In this paper, the primary occupancy of each channel is modeled as a discrete-time alternating renewal process with generally distributed on- and off-periods. A periodic sensing and greedy access policy is constructed based on the general channel occupancy model. Simulation results show that the proposed policy has better throughput than the policies using channel models with exponentially distributed on- or off-periods.

Decision-Making Problems for Shop Floor Simulation in Discrete Part Manufacturing

  • Jang, Pyoung-Yol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1114-1116
    • /
    • 2005
  • Shop floor control systems (SFCS) are used to make real-time planning and scheduling decisions to optimize the efficiency of manufacturing shops. These shops exhibit a non-linear, dynamic evolution caused by 1) the concurrent flows of disparate parts following complex routings, 2) a variety of machines that breakdown at random times, 3) stochastic arrivals of new parts with different priorities, and 4) jobs that have probabilistic processing times and transportation times. Because of their ability to capture that evolution faithfully, simulation models are often used in the aforementioned decisions. In this paper, various types of decision-making problems encountered in a shop floor have been investigated and categorized into process related problems and resource related problems for shop floor simulation.

  • PDF

Optimization of Satellite Upper Platform Using the Various Regression Models (다양한 회귀모델을 이용한 인공위성 플랫폼의 최적화)

  • Jeon, Yong-Sung;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1430-1435
    • /
    • 2003
  • Satellite upper platform is optimized by response surface method which has non-gradient, semi-glogal, discrete and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method and Factorial Design. Also response surface is generated by the various regression functions. Structure analysis is execuated with regard for static and dynamic environment in launching stage. As a result response surface method is superior to other optimization method with respect to optimum value and cost of computation time. Also a confidence is varified in the various regression models.

  • PDF

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.

Study on the Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능개선에 관한 연구)

  • Kim Yeong-Hwan;Seo Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.543-547
    • /
    • 2004
  • Visualization of construction process simulation and physical modeling were considered to overcome the limitations of current graphical simulation. The output of discrete-event simulation programs which are the most common mathematical statistical simulation tool for construction processes were analyzed for the visualization of earthmoving process that dealing with objects without fixed. Object-oriented models for equipment, material and work environments were devised to effectively visualize the numerical simulation results of the working time, the queuing time as well as the amount resources etc. The oscillation of the crane's cable and the lifted material that should be considered to rationally modeled and simulated by construction graphical simulation. The derived equation of motion was solved by numerical analysis procedure. Then obtained results was used for physical modeling.

  • PDF

Development of Two-lane Highway Vehicle Model Based on Discrete Time and Space (이산적 시공간 기반 2차로 도로 차량모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.785-791
    • /
    • 2011
  • Two-lane and two-way traffic flow shows various dynamic relationships according to the behaviors of low-speed vehicle and overtaking. And it is essential to develop a vehicle model which simultaneously explains the behaviors of low-speed vehicle and overtaking using opposite lane in order to microscopically analyze various two-lane and two-way traffic flows by traffic flow simulation. In Korea, some studies for car-following and lane-changing models for freeway or signalized road have been reported, but few researches for the development of vehicle model for two-lane and two-way highway have been done. Hence, a microscopic two-lane and two-way vehicle model was, in this study, developed with the consideration of overtaking process and is based on CA (Cellular Automata) which is one of discrete time-space models. The developed model is parallel combined with an adjusted CA car-following model and an overtaking model. The results of experimental simulation showed that the car-following model explained the various macroscopic relationships of traffic flow and overtaking model reasonably generated the various behaviors of macroscopic traffic flows under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking. The vehicle model presented in this study is expected to be used for the simulation of more various two-lane, two-way traffic flows.

Technology Forecasting using Bayesian Discrete Model (베이지안 이산모형을 이용한 기술예측)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • Technology forecasting is predict future trend and state of technology by analyzing the results so far of developing technology. In general, a patent has novel information about the result of developed technology, because the exclusive right of technology included in patent is protected for a time period by patent law. So many studies on the technology forecasting using patent data analysis has been performed. The patent keyword data widely used in patent analysis consist of occurred frequency of the keyword. In most previous researches, the continuous data analyses such as regression or Box-Jenkins Models were applied to the patent keyword data. But, we have to apply the analytical methods of discrete data for patent keyword analysis because the keyword data is discrete. To solve this problem, we propose a patent analysis methodology using Bayesian Poisson discrete model. To verify the performance of our research, we carry out a case study by analyzing the patent documents applied by Apple until now.