• Title/Summary/Keyword: discrete state feedback

Search Result 112, Processing Time 0.033 seconds

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

The Implementation of a Discrete PI Speed Controller for an Induction Motor (유도전동기용 이상 PI형 속도제어기의 구성)

  • 김광배;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.1
    • /
    • pp.26-35
    • /
    • 1986
  • In this paper, non-linear state equations for a 3-phase, 220V, 0.4 KW, squirrel cage induction motor have been derived using the d-q transformation and then these equations have been linearized around an operating point by a small perturbation method. Root loci on the s-plane with repect to the changes of slip S and supply frequency f have been studied. Based on the above results, the derived linear state equations have been augmented to the 6th order, including the output velocity feedback and a discrete PI speed controller. Using the new state equations, stability regions on the Kp-Kl plane have been investigated for slip S and sampling time T. In designing a discrete PI controller, the coefficients Kp and Kl around the normal operating point (220V,1,692rpm,60Hz)have been chosen under the assumptions that each response to a perturbation input of reference speed and load torque be underdamped and dominated by a pair of complex poles. Step responses in the experimental system using an Intel SDK-86 and an optimized PWM inverter show satisfactory results that the maximum overshoots and damped frequency are well coincided with ones from the computer simulation.

  • PDF

Robust pole placement method using matching condition (Matching 조건을 이용한 강인한 극점배치 방법)

  • 신준호;정정주;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.696-699
    • /
    • 1997
  • In this paper, we presents that for discrete system with matched perturbation of uncertain parameters in the state coefficient matrix A(i.e., with perturbation of A in the range of the input matrix B), the poles of the perturbed closed loop system can be placed into the preassigned circle by the static-state feedback. We discuss the robust stabilization of the system satisfying the matching condition and application to the controller design problem.

  • PDF

Optimal Control of Nuclear Reactors by Digital Computer (전자계산기에 의한 원자로최적제어)

  • 천희영;박귀태
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.66-71
    • /
    • 1977
  • In this paper a method is presented for the optimal control of a nuclear reactor at equilibrium state by use of a digital computer. Using the optimal control theory, we formulate the control problem of the reactor as a discrete-time linear regulator problem. A quadratic performance index is defined. The effects of choosing different performance index weighting matrices to the feedback gain matrix and reactor transient responses are studied for the deterministic optimal control with all state variables accessible to measurement.

  • PDF

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF

Mixed $H_2/H_{\infty}$ Finite Memory Controls for Output Feedback Controls of Discrete-time State-Space Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.529-534
    • /
    • 2005
  • In this paper, a new type of output feedback control, called a $H_2/H_{\infty}$ fnite memory control (FMC), is proposed for deterministic state space systems. Constraints such as linearity, unbiasedness property, and finite memory structure with respect to an input and an output are required in advance to design $H_2/H_{\infty}$ FMC in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FMC design problems can be converted into convex programming problems written in terms of linear matrix inequalities (LMIs) with some linear equality constraints. Through simulation study, it is illustrated that the proposed $H_2/H_{\infty}$ FMC is more robust against uncertainties and faster in convergence than the existing $H_2/H_{\infty}$ output feedback control schemes.

  • PDF

Positive Real Control for Uncertain 2-D Singular Roesser Models

  • Xu Huiling;Xie Lihua;Xu Shenyuan;Zou Yun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • This paper discusses the problem of positive real control for uncertain 2-D linear discrete time singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainty. The purpose of this study is to design a state feedback controller such that the resulting closed-loop system is acceptable, jump modes free and stable, and achieves the extended strictly positive realness for all admissible uncertainties. A version of positive real lemma for the 2-D SRM is given in terms of linear matrix inequalities (LMIs). Based on the lemma, a sufficient condition for the solvability of the positive real control problem is derived in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMIs is proposed.

Implementation of Robust Prediction Observer Controller for DC-DC Converter

  • Shenbagalakshmi, R.;Raja, T. Sree Renga
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1389-1399
    • /
    • 2013
  • A discrete controller is designed for low power dc-dc switched mode power supplies. The approach is based on time domain and the control loop continuously and concurrently tunes the compensator parameters to meet the converter specifications. A digital state feedback control combined with the load estimator provides a complete compensation, which further improves the dynamic performance of the closed loop system. Simulation of digitally controlled Buck converter is performed with MATLAB/Simulink. Experimental results are given to demonstrate the effectiveness of the controller using LabVIEW with a data acquisition card (model DAQ Pad - 6009).

State Feedback Stabilization of Network Based Control Systems with Time-varying Delay (시변시간지연을 가지는 네트워크 기반 시스템의 상태궤환 안정화)

  • Jung Eui-Heon;Shu Young-Su;Lee Hong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.741-746
    • /
    • 2004
  • When investigating a control problem for network based control systems, the main issue is network-induced delay. This delay can degrade the performance of control systems designed without considering the delay and even destabilize the system. In this paper, we consider the stabilization of network based control systems, where there is bounded time-varying delay. This delay is treated like parameter variation of a discrete time system. The state feedback controller design is formulated as linear matrix inequality. Finally, we show that the stability of control systems designed with considering the delay is superior to that is not so.