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Abstract: In this paper, a new type of output feedback control, called a H2/H∞ finite memory control (FMC), is proposed

for deterministic state space systems. Constraints such as linearity, unbiasedness property, and finite memory structure with

respect to an input and an output are required in advance to design H2/H∞ FMC in addition to the performance criteria in

both H2 and H∞ sense. It is shown that H2, H∞, and mixed H2/H∞ FMC design problems can be converted into convex

programming problems written in terms of linear matrix inequalities (LMIs) with some linear equality constraints. Through

simulation study, it is illustrated that the proposed H2/H∞ FMC is more robust against uncertainties and faster in convergence

than the existing H2/H∞ output feedback control schemes.
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1. Introduction

The mixed H2/H∞ output feedback control utilizes measure-

ments to generate the control that satisfies both H2 and H∞
specifications given in terms of bounds [1], [2], [3], [4]. These

controls can be synthesized by combining a control part and

an estimation part or by generating the control from dynamic

models. In case of the latter, the transfer function from the

measurement to the control has an infinite impulse response

(IIR).

In signal processing area, the system with finite impulse re-

sponse (FIR) is preferable since the accumulation of undesir-

able effects can be avoided due to a finite memory structure.

Thus, there have been a wide of researches on characteris-

tics and efficient implementations for FIR systems. As FIR

systems, FIR filters have been widely used and investigated,

which were also proposed in state space models as a sub-

stitute of Kalman filter [5], [6]. In case of controls, there

are some trials to apply the finite memory structure as the

FIR system to the design of the control according to the lin-

ear quadratic Gaussian performance criterion for continuous-

time systems [7] and discrete-time systems [8], respectively.

However, there are no results for H∞ performance criterion

and mixed H2/H∞ performance criterion. In this paper,

H∞ and mixed H2/H∞ output feedback controls with finite

memory structure will be proposed.

H∞ and mixed H2/H∞ output feedback controls with finite

memory structure can be represented using measurements

and inputs during a finite time, i.e., a horizon, as

uk =

k−1∑

i=k−Nf

Hk−iyi +

k−1∑

i=k−Nf

Lk−iui (1)

for some gains Hi and Li. Note that even though the con-

trol (1) uses the finite measurements and inputs on the recent

time interval as FIR filters, this is not of the FIR form. So

this kind of the control will be called finite memory controls

(FMC) rather than FIR controls. In this paper, Hi and Li

will be determined to minimize the H∞ performance crite-

rion under the upper bounded H2 performance and the FMC

with these Hi and Li will be called the mixed H2/H∞ FMC.

The proposed H2/H∞ FMC is both unbiased and opti-

mal by design for the given performance criterion. The

‘by design’ means that the unbiased property and optimality

are built into the proposed FMC during its design simultane-

ously. In addition, the centering concept [9] of the control to

the optimal state state feedback control makes BMI problem

change into LMI problem so that it gets easier to solve the

mixed H2/H∞ FMC problem.

This paper is organized as follows. In Section 2, some defi-

nitions and problem statement are given. In Section 3, H2,

H∞, and mixed H2/H∞ FMC problems are solved in terms

of linear matrix inequalities (LMIs). In Section 4, numerical

example is given. Finally, conclusion is stated in Section 5.

2. Problem Formulation
Consider a linear discrete-time state space model:

xk+1 = Axk + Buk + Gwk, (2)

yk = Cxk + Dwk (3)

zk = D1xk + D2uk (4)

where xk ∈ <n, uk ∈ <l, yk ∈ <q, and zk ∈ <p are the

state, the input, the measurement, and the controlled signal,

respectively. Note that DT
1 D2 = 0, DT

2 D2 = I, DGT = 0,

and DDT = I.

The system (2)-(3) will be represented in a batch form on

the time interval [k−Nf , k] called the filter horizon. On the

horizon [k −Nf , k], measurements are expressed in terms of

the state xk at the time k and inputs as follows:

Yk−1 = C̄Nf xk + B̄Nf Uk−1 + ḠNf Wk−1 + D̄Nf Wk−1 (5)

where

Yk−1
4
= [yT

k−Nf
yT

k−Nf +1 · · · yT
k−1]

T , (6)

Uk−1
4
= [uT

k−Nf
uT

k−Nf +1 · · · uT
k−1]

T , (7)

Wk−1
4
= [wT

k−Nf
wT

k−Nf +1 · · · wT
k−1]

T ,
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and C̄Nf , B̄Nf , ḠNf are obtained from

C̄i
4
=




CA−i

CA−i+1

CA−i+2

...

CA−1




=

[
C̄i−1

C

]
A−1, (8)

B̄i
4
= −




CA−1B CA−2B · · · CA−iB

0 CA−1B · · · CA−i+1B

0 0 · · · CA−i+2B
...

...
...

...

0 0 · · · CA−1B




=

[
B̄i−1 −C̄i−1A

−1B

0 −CA−1B

]
, (9)

Ḡi
4
= −




CA−1G CA−2G · · · CA−iG

0 CA−1G · · · CA−i+1G

0 0 · · · CA−i+2G
...

...
...

...

0 0 · · · CA−1G




=

[
Ḡi−1 −C̄i−1A

−1G

0 −CA−1G

]
, (10)

D̄i
4
=

[
diag(

i︷ ︸︸ ︷
D D · · · D)

]

=
[
diag(D̄i−1, D)

]
, 1 ≤ i ≤ Nf .

The mixed H2/H∞ FMC with FIR structure can be ex-

pressed as a linear function of the finite measurements Yk−1

and inputs Uk−1 on the filter horizon [k −Nf , k] as follows:

uk
4
= HYk−1 + LUk−1 (11)

where H and L are gain matrices. It is desirable that the

FMC (11) should be unbiased from the desirable optimal

state feedback control as

uk = u∗k, ∀wk = 0 (12)

Denote Tew(z) as the transfer function from the exogenous

input wk to the difference ek = uk−u∗k between the input uk

and the optimal state feedback law u∗k. H and L of the mixed

H2/H∞ FMC are determined by optimization problem based

on the following performance criterions:

min
H,L

γ

subject to

sup
wk

∑∞
k=0 ||zk||22∑∞
k=0 ||wk||22

< γ2, ‖Tew(z)‖2 < β (13)

In the next section, we will present the solution of H2 and

H∞ FMC problems.

3. Mixed H2/H∞ FMC

3.1. H2 FMC

For wk = 0, we obtain from (5)

uk = HYk−1 + LUk−1

= HC̄Nxk + HB̄NUk−1 + LUk−1.

The optimal state feedback control under the following LQ

criterion

Nc−1∑
j=0

[
xT

k+jQxk+j + uT
k+jRuk+j

]
+ xT

k+Nc
Fxk+Nc (14)

is given by

u∗k = −R−1BT [I + K1BR−1BT ]−1K1Axk

= −[R + BT K1B]−1BT K1Axk, (15)

where Ki is given by

Ki = AT Ki+1A−AT Ki+1B[R + BT Ki+1B]−1BT

× Ki+1A + Q (16)

= AT Ki+1[I + BR−1BT Ki+1]
−1A + Q (17)

with the boundary condition

KNc = F. (18)

Therefore, the following constraints on H and L are required

for (12) to hold:

HC̄Nf = −[R + BT K1B]−1BT K1A

HB̄Nf = −L. (19)

From (19), the FMC in (11) is rewritten into

uk = H(Yk−1 − B̄Nf Uk−1) (20)

HC̄Nf = −[R + BT K1B]−1BT K1A (21)

The constraint HC̄Nf = −[R + BT K1B]−1BT K1A will be

called the quasi-deadbeat constraint in the sense that it is a

deadbeat constraint for the nominal system without the ex-

ogenous input wk = 0, but may not be a deadbeat constraint

for the system (2) and (3) with nonzero exogenous input.

Next, we derive the transfer function Tew(z). Exogenous

input wk satisfies the following state model on Wk−1

Wk = AuWk−1 + Buwk, (22)

where

Au =




0 I 0 · · · 0

0 0 I
. . . 0

...
...

. . .
. . .

...

0 0 · · · 0 I

0 0 · · · 0 0



∈ RpNf×pNf (23)
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Bu =




0

0

0
...

I



∈ RpNf×p (24)

It follows from (5) that

Yk−1 − B̄Nf Uk−1 = C̄Nf xk + (ḠNf + D̄Nf )Wk−1. (25)

Pre-multiplying (25) by H and using the constraint HC̄Nf =

−[R + BT K1B]−1BT K1A gives

ek = uk − u∗k = H(ḠNf + D̄Nf )Wk−1. (26)

From (41) and (40), we can obtain Tew(z) as follows:

Tew(z) = H(ḠNf + D̄Nf )(zI −Au)−1Bu. (27)

Based on Tew(z), we have the following theorem for H2 FMC:

Theorem 1: Assume that the following LMI problem is fea-

sible:

min
F,W

tr(W ) subject to

[
W S

ST I

]
> 0.

where

S = FM(ḠNf + D̄Nf ) + H0(ḠNf + D̄Nf ) (28)

, H0 = −[R+BT K1B]−1BT K1A(C̄T
Nf

C̄Nf )−1C̄T
Nf

, and MT

is the bases of the null space of C̄T
Nf

. Then the optimal gain

matrix of the H2 FMC of the form (20) is given by

H = FM + H0.

Proof. The constraint HC̄Nf = −[R + BT K1B]−1BT K1A

is required for the H2 FMC to be of the form (20). H2 norm

of the transfer function Tew(z) in (27) is obtained by

‖Tew(z)‖22 = tr
(
H(ḠNf + D̄Nf )M(ḠNf + D̄Nf )T HT )

,

where

M =

∞∑
i=0

Ai
uBuBT

u (AT
u )i.

Since Ai
u = 0 for i ≥ Nf , we obtain

M =

∞∑
i=0

Ai
uBuBT

u (AT
u )i =

Nf−1∑
i=0

Ai
uBuBT

u (AT
u )i = I.

Thus we have

‖Tew(z)‖22 = tr
(
H(ḠNf + D̄Nf )(ḠNf + D̄Nf )T HT )

. (29)

Introduce a matrix variable W such that

W > H(ḠNf + D̄Nf )(ḠNf + D̄Nf )T HT . (30)

Then tr(W ) > ‖Tew(z)‖22. By Schur complement, (30) is

equivalently changed into

[
W H(ḠNf + D̄Nf )

(ḠNf + D̄Nf )T HT I

]
> 0. (31)

Hence, by minimizing tr(W ) subject to HC̄Nf = −[R +

BT K1B]−1BT K1A and the above LMI, we can obtain the

optimal gain matrix H for the H2 FMC. The equality con-

straint HC̄Nf = −[R + BT K1B]−1BT K1A can be elimi-

nated by computing the null space of C̄T
N . All solutions to

the equality constraint HC̄Nf = −[R + BT K1B]−1BT K1A

are parameterized by

H = FM + H0, (32)

where F is a matrix containing the independent variables.

Replacing H by FM + H0, the LMI condition in (31) is

changed into the one in the Theorem 1. This completes the

proof. ¥

3.2. H∞ FMC

For the system transfer function

G(z) ,
[

A B

C D

]
= C(zI −A)−1B + D,

we introduce the well-known bounded real lemma.

Lemma 1: (Bounded real lemma) Let γ > 0. The following

two conditions are equivalent:

(1) ‖G(z)‖∞ < γ.

(2) There exists an X > 0 such that




−X XA XB 0

AT X −X 0 CT

BT X 0 −γI DT

0 C D −γI


 < 0.

If we use the bounded real lemma to derive H∞ FMC, the

resultant matrix inequality can be described by BMI(Binear

Matrix Ineqality) with respect to H and L. Some compli-

cated BMI should be solved numerically. In the following,

instead of this BMI form, a LMI form of H∞ FMC will be

proposed by introducing a centering technique.

The state-feedback solution to the infinite horizon H∞ per-

formance criterion of (13) is given in a form of

u∗k = −BT P [I + (BBT − γ2GGT )P ]−1Axk (33)

w∗k = γ−2GT P [I − γ−2GGT P ]−1

× (Axk + Bwk) (34)

where P is the solution to the following algebraic H∞ Riccati

equation:

P = AT P [I + (BBT − γ−2GGT )P ]−1A + DT
1 D1.

Using w∗k and the state space (2)-(3), the following new state

space is obtained :

xi+1 = Axi + Bui + Gwi
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= Axi + Bui + G(wi − w∗i ) + Gw∗i

=
[
I + γ−2GGT P [I − γ−2GGT P ]−1]

(Axi + Bui) + G(wi − w∗i )

= [I − γ−2GGT P ]−1(Axi + Bui)

+ G∆wi (35)

yi = Cxi + Dwi

= Cxi + Dwi

− γ−2DGT P [I − γ−2GGT P ]−1(Axi + Bui)

= Cxi + D∆wi (36)

where ∆wi = wi−w∗i . We can treat ∆wi as disturbance. The

control problem based on (13) is reduced to the estimation

problem as (42). In other words, all that remain to do is to

estimate u∗k in (33).

The new state space (35)-(36) can be represented in a batch

form on the time interval [k −Nf , k]

Yk−1 = C̄∗Nf
xk + B̄∗

Nf
Uk−1 + (Ḡ∗Nf

+ D̄Nf )∆Wk−1 (37)

where

∆Wk−1
4
=




wk−Nf − w∗k−Nf

wk−Nf +1 − w∗k−Nf +1

wk−Nf +2 − w∗k−Nf +2

...

wk−1 − w∗k−1




C̄∗Nf
, B̄∗

Nf
, and Ḡ∗Nf

are defined by replacing A and B with

[I − γ−2GGT P ]−1A and [I − γ−2GGT P ]−1B. Without dis-

turbance, uk in (11) is represented as

uk = HYk−1 + LUk−1

= HC̄∗Nf
xk + HB̄∗

Nf
Uk−1 + LUk−1.

uk can be centered to the optimal state feedback control by

setting

HC̄∗Nf
= −BT P [I + (BBT − γ2GGT )P ]−1A (38)

HB̄∗
Nf

= −L. (39)

Using the constraints (38) and (39) gives

ek
4
= uk − u∗k = H(Ḡ∗Nf

+ D̄∗
Nf

)∆Wk−1. (40)

Disturbance ∆wk satisfies the following state model on

∆Wk−1:

∆Wk = Au∆Wk−1 + Bu∆wk (41)

where Au and Bu are given in (23) and (24). In the new

state space, the performance criterion (13) can be changed

to

sup
wk

||uk − u∗k||2
||wk − w∗k||2

< γ2. (42)

From (41) and (40), we can obtain a transfer function

Te∆w(z) from the disturbance ∆wk to the estimation error

ek as follows:

Te∆w(z) = H(Ḡ∗Nf
+ D̄∗

Nf
)(zI −Au)−1Bu. (43)

Using Lemma 1, we can obtain the LMI for FMC satisfying

the H∞ performance .

Theorem 2: Assume that the following LMI is satisfied for

X > 0 and F :

min
X>0,F

γ∞

subject to




−X XAu XBu 0

AT
u X −X 0 ΞT

BT
u X 0 −γ∞I 0

0 Ξ 0 −γ∞I


 < 0

where

Ξ = FM∗(Ḡ∗Nf
+ D̄∗

Nf
) + H∗

0 (Ḡ∗Nf
+ D̄∗

Nf
) (44)

H∗
0 = −BT P [I + (BBT − γ2GGT )P ]−1A

× (C̄∗T
Nf

C̄∗Nf
)−1C̄∗T

Nf
(45)

, and M∗T is the bases of the null space of C̄∗T
Nf

. Then, the

gain matrices of the H∞ FMC of the form (20) are given by

H = FM∗ + H∗
0 , L = −HB̄∗

Nf
.

Proof. According to Lemma1, the condition ‖Te∆w(z)‖∞ <
γ∞ is equivalent to




−X XAu XBu 0

Au
T X −X 0 (Ḡ∗Nf

+ D̄∗Nf
)T HT

Bu
T X 0 −γ∞I 0

0 H(Ḡ∗Nf
+ D̄∗

Nf
) 0 −γ∞I




< 0

The equality constraint HC̄∗Nf
= −BT P [I + (BBT −

γ2GGT )P ]−1A can be eliminated in the exactly same way

as in H2 FMC. ¥

3.3. Mixed H2/H∞FMC

Let’s define γ∗2 to be the ‖Tew(z)‖22 due to the optimal H2

FMC. From the previous two subsections, it is so clear how

to formulate the H2/H∞ FMC problem. Thus, we have the

following theorem for the mixed H2/H∞ FMC:

Theorem 3: Assume that the following LMI problem is fea-

sible:

min
W,X>0,F

γ∞ subject to

tr(W ) < αγ∗2 , where α > 1

[
W S

ST I

]
> 0,
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


−X XAu XBu 0

AT
u X −X 0 ΞT

BT
u X 0 −γ∞I 0

0 Ξ 0 −γ∞I


 < 0

where S, Ξ, and H∗
0 are defined in (28), (44), and (45),

respectively. M∗T is the bases of the null space of C̄∗T
Nf

.

Then, the gain matrix of the H2/H∞ FMC of the form (20)

is given by

H = FM∗ + H∗
0 .

Proof. So clear, hence omitted. The above mixed H2/H∞

FMC problem allows us to design the optimal FMC with

respect to the H∞ norm while assuring a prescribed perfor-

mance level in the H2 sense. By adjusting α > 0, we can

trade off the H∞ performance against the H2 performance.

Remark 1: Optimal H2 FMC can be obtained analytically

from [8], [10]

HB = −K∞(C̄TN{÷−∞N{ C̄N{)
−∞C̄TN{÷−∞N{ .

Thus we have

γ∗2 = tr(HBΞNf HT
B),

where K∞ and ΞNf are obtained from

K∞ = R−1BT [I + K1BR−1BT ]−1K1A

= [R + BT K1B]−1BT K1A,

Ξi , (Ḡi + D̄i)(Ḡi + D̄i)
T

= ḠiḠ
T
i + D̄iD̄

T
i

=

[
Ḡi−1Ḡ

T
i−1 + D̄i−1D̄

T
i−1 0

0 I

]

+

[
C̄i−1

C

]
A−1GGT A−T

[
C̄i−1

C

]T

=

[
Ξi−1 0

0 I

]

+

[
C̄i−1

C

]
A−1GGT A−T

[
C̄i−1

C

]T

(46)

for 1 ≤ i ≤ Nf .

4. Numerical Example
To illustrate the validity of the proposed FMC, numerical

example to compare the proposed H2/H∞ FMC and the

existing H2/H∞ output feedback control of [3], [4] is given

for the following linear discrete-time invariant state-space

model which has actual temporary uncertainty:

xk+1 =

[
0.33 + 2δk 0.01 + δk

0.01 0.9 + 3δk

]
xk +

[
0.3

0.5

]
uk

+

[
1 0

1 0

]
wk

yk =
[

1 0
]
xk +

[
1 0

]
wk

zk =

[
1 0

0 0

]
xk +

[
0

0

]
uk

where δk is a model uncertain parameter which is assumed

to satisfy

δk =

{
0.1, 100 ≤ k ≤ 150

0, otherwise
.

Figures 1 and 2 compare the state trajectories of x1 and x2,

respectively, in case that the exogenous input wk is given by

wk =

[
w1k

w2k

]
, where w1k ∼ (0, 1), w2k ∼ (0, 1).

From this simulation result, it is clearly shown that the pro-

posed mixed H2/H∞ FMC is more robust against to the

uncertainty and faster in convergence. Therefore, it is ex-

pected that the proposed H2/H∞ FMC can be usefully used

in real applications.

5. Conclusion
In this paper, a new type of control called the mixed H2/H∞
FMC was proposed for discrete-time state space signal mod-

els. The control problem has been formulated in terms of

linear matrix inequalities (LMIs). The proposed control

scheme enables us to consider both the H2 and the H∞ per-

formances. The proposed mixed H2/H∞ FMC is linear with

the most recent finite measurements and inputs, and has

the unbiasedness property from the optimal state feedback

control. Furthermore, due to the FIR structure of FMC,

the proposed scheme is believed to be robust against tempo-

rary modelling uncertainties or numerical errors, while other

output feedback control method with an IIR structure such

as dynamic output feedback control or observer based con-

trol may show poor robustness in these cases. The proposed

H2/H∞ FMC will be useful for many pratical control prob-

lems where signals are represented by state space models.
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