• 제목/요약/키워드: discontinuity on beam

검색결과 27건 처리시간 0.032초

Effect of Plan Irregularity and Beam Discontinuity on Structural Performances of Buildings under Lateral Loadings

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • 제24권2호
    • /
    • pp.53-61
    • /
    • 2022
  • Irregularities in the structure are crucial factors in screening structural vulnerability under extreme loadings. Numerical analyses were carried out considering wind and seismic loadings for four structures with discrete irregularity: continuous and discontinuous beams with varied story levels, and L-shaped irregular buildings. Structural responses such as maximum displacements, bending moments, axial forces, torsions, and story drifts are evaluated as per the criteria and limits defined by ACI 318. The outcomes indicate that the frame system with beam discontinuity on the upper half of the height exhibits the best structural performance. The results also indicate that the asymmetrical design of the L-shaped model makes it more susceptible to damage when subjected to strong lateral loading conditions.

불연속 단면을 갖고 제어 종동력을 받는 자유 Timoshenko보의 안정성 해석 (Stability Analysis of a Discontinuous Free Timoshenko Beam Subjected to a Controlled Follower Force)

  • 류봉조;박영필
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.478-487
    • /
    • 1991
  • In this study, dynamic stability of discontinuous free Timoshenko beam, barring a concentrated mass, under constant follower force is considered. Governing differential equations are derived based on the extended Hamilton's principle and finite element method is applied for numerical analysis. Conclusions of the study are as follows : (1) Without force direction control, (i) the critical follower force at instability is increased with concentrated mass regardless of discontinuity. (ii) the minimum critical follower force is located in the vicinity of discontinuity position .xi.$_{d}$=0.75. (iii) at mass location .mu. .leq.0.5 the force at instability is decreased as magnitude of concentrated mass is increased but, at .mu. .geq. 0.5 the force is increased as the mass is increased. (2) With force direction control, (i) shear deformation parameter S contributes insignificantly to the force at instability when S>10$^{[-993]}$ (ii) maximum critical follower force can be obtained for the discontinuity location .xi.$_{d}$=0.25. (iii) the critical follower force is increased as magnitude of concentrated mass .alpha. is increased at mass location .mu. .geq.0.4, but is increased, .mu ..leq.0.4.4.

프리스트레스트 콘크리트 보 단면의 최적설계 (Optimization of Prestressed Concrete Beam Section)

  • 조선규;최외호
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.605-623
    • /
    • 2015
  • A coupled experimental and numerical study of shear fracture in the edge-notched beam specimens of quasi-brittle materials (concrete-like materials) are carried out using four point bending flexural tests. The crack initiation, propagation and breaking process of beam specimens are experimentally studied by producing the double inclined edge notches with different ligament angles in beams under four point bending. The effects of ligament angles on the shear fracturing path in the bridge areas of the double edge-notched beam specimens are studied. Moreover, the influence of the inclined edge notches on the shear-fracture behavior of double edge-notched beam specimens which represents a practical crack orientation is investigated. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the performed experimental results proving the accuracy and validity of the proposed study.

평판과 보의 연성구조물의 진동에너지 전달특성 분석에 관한 연구 (Vibration Transmission of Plate-Beam Structure having discontinuity)

  • 이형택;김정태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.391-395
    • /
    • 1997
  • The transmission of sound and vibration through structures is of interest in many noise control problems, including architectural acoustics, sound transmission through air craft, spacecraft and ship, and the transmission of noise through machinery and engine enclosures. Statistical Energy Analysis provides a simple and accurate method of approaching these problems. In this paper, comparing the measured coupling loss factor of plate-beam with measured coupling loss factor of mass on the junction will be inspected.

  • PDF

개선된 접합부 방식을 갖는 혼합구조의 비선형 거동 (Nonlinear Behaviors of Mixed Structure Considering Advanced Connection Types)

  • 허택녕;윤익중;김문겸;조성용;심별
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.677-682
    • /
    • 2007
  • Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general finite element analysis computer program(ABAQUS). The present analysis focuses on the enhancing behaviors of mixed structure's connection type. Main 2 issues are related with discontinuity which reduce the stiffness of structure and proposing enhanced connection type. To validate the present study approaching 2 way, analytic one and experimental test.

  • PDF

콘테이너선의 수평-비틂연성진동 해석 (Analysis of Coupled Horizontal-Torsional Vibrations of Container Ships)

  • 김극천;김상주
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.1-10
    • /
    • 1986
  • A container ship, due to wide hatch openings, has characteristics of poor torsional rigidity, strong coupling of horizontal-torsional modes and significant discontinuity in the longitudinal variation of hull sections. In the mathematical formulation of the problem the hull is modeled as a beam and the transfer matrix method is utilized. The cross decks between cargo hatch opening are separated from the main hull and regarded as equivalent springs restraining torsion of hull. The effect of shear deformation of ship-side plating on torsion is taken into account in addition to St. Venant's and bending torsional rigidities. Compatibility requirements at cross section discontinuity are approximately considered. Developing the practical calculation procedure and the computer programs for application to an actual ship, some parametric studies on modeling methods of the cross deck, the compatibility condition, added-mass center etc. are out for the purpose of comparison.

  • PDF

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

Simulation of cyclic response of precast concrete beam-column joints

  • Adibi, Mahdi;Talebkhah, Roozbeh;Yahyaabadi, Aliakbar
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.223-236
    • /
    • 2019
  • Experience of previous earthquakes shows that a considerable portion of concrete precast buildings sustain relatively large damages especially at the beam-column joints where the damages are mostly caused by bar slippage. Precast concrete buildings have a kind of discontinuity in their beam-column joints, so reinforcement details in this area is too important and have a significant effect on the seismic behavior of these structures. In this study, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints in usual practice of precast concrete building. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints. In addition, the seismic behavior of the precast building damaged during Bojnord earthquake 13 May 2017, is investigated by using the proposed model for the beam-column joints. Damage unexpectedly inducing the precast building in the moderate Bojnord earthquake may confirm that bearing capacity of the precast building was underestimated without consideration of joint behavior effect.