• Title/Summary/Keyword: disaster-prevention

Search Result 3,384, Processing Time 0.025 seconds

Relationship between the P Wave Velocity, Static Elastic Modulus, and Dynamic Elastic Modulus of Rocks (암종별 P파 속도, 정탄성계수 및 동탄성계수의 상관관계 분석 연구)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.339-349
    • /
    • 2019
  • The relationship between the P wave velocity, static elastic modulus, and dynamic elastic modulus of different rock types was investigated to identify the distributive characteristics of the dynamic elastic modulus. Laboratory and in situ test results from 1,646 rock specimens, which are obtained for design and construction of structure, were analyzed, and grouped into three key rock types: gneiss, granite, and sandstone. These relationships were verified by comparing them with the results from previous studies. The gneiss samples exhibit a linear P wave velocity-static elastic modulus relationship, whereas the granite and sandstone samples exhibit exponential relationships. Their coefficient of determination ($R^2$) values are all in the 0.491-0.642 range, and are similar to those obtained in previous studies. The relationship between the static and dynamic elastic modulus exhibits a linear relationship for all rock types, yielding a coefficient of determination in the 0.543-0.676 range. The relationship between the P wave velocity and static elastic modulus follows an exponential regression for all rock types, with a high coefficient of determination that is in the 0.875-0.940 range.

Track Models Generation Based on Spatial Image Contents for Railway Route Management (철도노선관리에서의 공간 영상콘텐츠 기반의 궤적 모델 생성)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.30-36
    • /
    • 2008
  • The Spatial Image contents of Geomorphology 3-D environment is focused by the requirement and importance in the fields such as, national land development plan, telecommunication facility management, railway construction, general construction engineering, Ubiquitous city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we tested of the railway facilities using laser surveying system, then we propose data a generation of spatial images for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation. As the results, We confirmed the solutions of varieties application for railway facilities management using 3-D spatial image contents.

  • PDF

Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 확률지도 비교)

  • Song, Seongwan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.5-13
    • /
    • 2021
  • The interest of expecting the liquefaction damage is increasing due to the liquefaction in Pohang in 2017. Liquefaction is defined as a phenomenon that the ground can not support the superstructure due to loss of the strength of the ground. As an alternative against this, many studies are being conducted to increase the precision and to compose a liquefaction hazard map for the purpose of identifying the scale of liquefaction damage using the liquefaction potential index (LPI). In this research, in order to analyze the degree of precision with regard to spatial interpolation objects such as LPI value and geotechnical information for LPI determination, liquefaction hazard map were made for the target area. Furthermore, based on the trend of precision, probability value was analyzed using probability maps prepared through qualitative characteristics. Based on the analysis results, the precision of the liquefaction hazard map setting the spatial interpolation object as geotechnical information is higher than that as LPI value. Furthermore, the precision of the liquefaction hazard map does not affect the distribution of the probability value.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Heat of Combustion Experiment Based on the Ratio of Moisture Content of Infected and Non-Infected Bursaphelenchus Xylophilus (재선충 감염 소나무와 비 감염 소나무의 수분함유율에 따른 연소열 실험)

  • Kwon, Hyuk;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.443-451
    • /
    • 2021
  • This study compared and analyzed the thermal characteristics based on the ratio of moisture content of infected and non-infected Bursaphelenchus Xylophilus by heat of combustion experiment. The experiment results are as follows. The analysisresult of the ratio of water content shows that 19.92% on average for infected Bursaphelenchus Xylophilus and 26.27% for non-infected which decreases water content as the size of conduction, convection, and radiant heat increases in case of fire. As the vaporization of the moisture content accelerates, the average moisture content is reached, and the result is contrary to the thermal characteristics of the wood that the moisture content is not ignited by a heat source when the moisture content is under 15%. The combustion heat analysis result showed that infected and non-infected Bursaphelenchus Xylophilus had no significant difference in combustion heat at about 3%. However, it shows that combustion heat is higher than other species. In conclusion, decreasing in moisture content based on the increasing conduction, convection, and radiant heat is one of the direct causes of ignition, and the lower the moisture content, the faster the fire spreads.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.

A numerical analysis study on the flammable volume by leakage of hydrogen fuel vehicles in parking lot (지하주차장 내 수소연료차의 수소 방출시 가연체적에 관한 수치해석적 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Kim, Doo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2021
  • The recent reduction in greenhouse gases, interest in environmental pollution such as low-carbon emission policies is increasing. Accordingly, the penetration rate of eco-friendly vehicles, including hydrogen battery vehicles capable of reducing carbon emission, is increasing, and thus it is required for disaster prevention and safety-related measures. In this study, the degree of risk for the concentration distribution of hydrogen when leaking hydrogen fuel vehicles according to ventilation conditions was analyzed through numerical analysis, limited to places in parking lots. As a result, when only one hydrogen tank was released, the combustible volume ratio of hydrogen in the underground parking lot was up to 8.6%, and as ventilation continued, the volume ratio of combustible hydrogen decreased to less than 1% after 150 seconds, indicating that mechanical ventilation is essential. In the case of simultaneous release or stage release of three hydrogen tanks, the final combustible volume ratio of hydrogen is similar, but the increase in the combustible volume ratio of hydrogen in the early stage of release is low, and further research is expected.

An Experimental Study on the Flexural Strength of Lap Spliced Ultra High Strength Fiber Reinforced Concrete Beams (이음된 초고강도 강섬유보강콘크리트 보의 휨강도에 관한 실험적 연구)

  • Bae, Baek-Il;Son, Dong-Hee;Choi, Hyun-Ki;Jung, Hyung-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the bending behavior of lap-spliced ultra-high-strength fiber-reinforced concrete members and evaluates the safety of the design codes for ultra-high-strength fiber-reinforced concrete structures. An experiment on a total of six beams was performed. The main variables were the fiber-inclusion and the lap-spliced length at the center of the beams. The steel fibers in a volume fraction of 2% were used, and the lap-splice lengths were determined to be 8db and 16db. As a result of the test, the specimens not reinforced with fiber lost abrupt load-bearing capacity at the lap region and did not experience yielding of the reinforcing bar. In the case of fiber-reinforced concrete, if a lap-splice length of 16db is secured, the yielding of the main reinforcing bar can be experienced, and appropriate flexural strength can be expressed. Based on the experimental results of this study, as a result of reviewing the lap-splice length calculation formulas of the current design standards and the ultra-high-strength concrete structural design recommendations, it was found that all of them were evaluated conservatively.

Development of Removable Deck Plate Formwork System for Beams (데크플레이트를 활용한 탈형 보-데크 거푸집 시스템 개발)

  • Jung, Joo-Hong;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.60-67
    • /
    • 2021
  • In lately, it's been developed and used a system of using deck plates as formwork in order to solve various problems caused by conventional formwork system. This system is more economical and has higher constructability than the conventional system by permanently embedding most of deck plates into the members. However, for this kind of embedded deck plates formwork system, it's been reported that it is difficult to verify filling of concrete in members like beams with narrow width and complicated rebar arrangement. In addtion, there are several problems such as corrosion of deck plates in terms of constructability and maintenance. Therefore, in this study, it is attempted to develop a removal-deck plate formwork system for beams by removing deck plates after concrete curing. The system consists of a deck plate module that acts as form, a frame preventing deformation by concrete lateral pressure, stirrup frame, and connector that combines these. As a result of this research, it is verified that it has higher constructability, efficiently prevents deformation caused by concrete lateral pressure and could be easily removed in the developed formwork system.

A Review of Precipitation Susceptibility in Warm Boundary Layer Clouds (따뜻한 구름에서의 강수민감도에 대한 고찰)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.109-118
    • /
    • 2019
  • Cloud-aerosol interactions are considered to be one of the most important forcing mechanisms in the climate system. However, there is considerable disagreement on the magnitude and even on the sign of how aerosol perturbations affect cloud fraction and lifetime. Furthermore, aerosol effects on clouds and precipitation are not readily separable from the effects of meteorology. This review paper summarizes the study of precipitation susceptibility $S_o$, which qualifies how aerosol perturbations alter the magnitude of the precipitation rate (R) while minimizing the effects of macrophysical factors such as cloud depth (H) and liquid water path (LWP). The analysis shows that the precipitation susceptibility $S_o$ for the warm marine boundary layer clouds is insensitive to aerosol perturbations at low LWP (equivalently low H). However, R decreases as aerosols increase at intermediate LWP. This is because aerosols act as cloud seed and produce numerous small-sized particles, which impede the collision and coalescence process that leads to precipitation. At high LWP, $S_o$ decreases with increasing LWP as there are enough water contents in the clouds. The LWP or H dependent $S_o$ behavior differs depending on the predominant cloud physics processes in the clouds.