DOI QR코드

DOI QR Code

Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target

공간보간 대상 및 지반정보에 따른 액상화 확률지도 비교

  • Song, Seongwan (Department of Civil & Environmental Engineering, Dankook University) ;
  • Hwang, Bumsik (Safety Innovation & Disaster Prevention Division, Korea Expressway Corporation Research Institute) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2021.07.07
  • Accepted : 2021.10.18
  • Published : 2021.11.01

Abstract

The interest of expecting the liquefaction damage is increasing due to the liquefaction in Pohang in 2017. Liquefaction is defined as a phenomenon that the ground can not support the superstructure due to loss of the strength of the ground. As an alternative against this, many studies are being conducted to increase the precision and to compose a liquefaction hazard map for the purpose of identifying the scale of liquefaction damage using the liquefaction potential index (LPI). In this research, in order to analyze the degree of precision with regard to spatial interpolation objects such as LPI value and geotechnical information for LPI determination, liquefaction hazard map were made for the target area. Furthermore, based on the trend of precision, probability value was analyzed using probability maps prepared through qualitative characteristics. Based on the analysis results, the precision of the liquefaction hazard map setting the spatial interpolation object as geotechnical information is higher than that as LPI value. Furthermore, the precision of the liquefaction hazard map does not affect the distribution of the probability value.

한반도 인근 지역은 지진으로부터 상대적으로 안전지대라고 여겨졌지만, 지난 2017년 포항지역에서 실제 액상화 현상이 발생 및 관측됨에 따라 액상화 현상을 예측하는 연구수요가 높아지고 있다. 액상화는 지반의 강도가 상실되면서 상부 구조물을 지지하지 못하게 되는 현상을 말하며, 이에 대한 대비책으로써 액상화 가능지수(LPI)를 바탕으로 하여 액상화가 발생할 시 동반되는 피해의 규모를 파악하기 위한 목적으로 액상화 재해도를 작성하는 연구 및 정밀도를 향상시키기 위한 연구가 다양하게 수행되고 있다. 본 연구에서는 액상화 재해도 작성 시 공간보간의 대상을 LPI 값과 LPI를 산정하는데 활용되는 지반정수로 구분하여 공간보간 대상에 따른 정밀도 변화를 분석하였으며, 정량적인 특성을 바탕으로 작성된 액상화 재해도의 작성 방법별 정밀도 변화 양상을 바탕으로 정성적인 특성을 통해 작성된 확률지도의 확률값 변화 양상을 파악하고자 하였다. 분석결과 공간보간대상을 LPI를 산정하기 위한 지반정수로 설정하는 경우의 정밀도가 LPI 자체를 공간보간하는 경우에 비해 높게 나타났으며, 액상화 재해도의 정밀도가 액상화 확률지도의 확률값 분포에 영향을 미치지는 않는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야 대학 중점연구소 지원사업의 연구비 지원(NRF-2018R1A6A1A 07025819) "ICT 융복합 기존건축물 내진리모델링 기술 개발"에 의해 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Andrus, Ronald D. and Kenneth H. Stokoe II. (2000), Liquefaction resistance of soils from shear-wave velocity Journal of geotechnical and geoenvironmental engineering, Vol. 126, No. 11, pp. 1015~1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
  2. Douglas, B. J., Olson, R. S. and Martin, G. R. (1981), Evaluation of the cone penetrometer test for SPT liquefaction assessment, Session on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO.
  3. Gang, B. J. (2019), Geotechnical information DB construction method for liquefaction assessment, Master's thesis, Dankook University (In Korean).
  4. Idriss, I. M. and Boulanger, R. W. (2008), Soil liquefatcion during earthquakes, EERI: Earthquake Research Institute, Ca, USA.
  5. Ishihara, K. (1985), Stability of natural deposits during earthquakes, In International conference on soil mechanics and foundation engineering, Vol. 11, pp. 321~376.
  6. Iwasaki, T., Tatsuoka, K., Tokida, F. and Yasuda, S. (1978), A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, CA., pp. 885~896.
  7. Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S. and Sato, H. (1982), Microzonation for soil liquefaction potential using simplified methods, In Proceedings of the 3rd international conference on microzonation, Seattle, Vol. 3, No. 2, pp. 1310~1330.
  8. Jung, Y. H., Kim, T. and Cho, W. (2014), Gmax of reclaimed ground on the western coast of Korea using various field and laboratory measurements, Marine Georesources and Geotechnology, Vol. 32, No. 4, pp. 351~367. https://doi.org/10.1080/1064119X.2013.764556
  9. Kim, I. K., Sung, W. M. and Jung, M. Y. (1993), Development and Validation of Multi-Purpose Geostatistical Model with Modified Kriging Method, J. Koran Inst. Mining Geol., Vol. 26, No. 2, pp. 207~215 (In Korean).
  10. Luna, R. and Frost, J. D. (1998), Spatial liquefaction analysis system, Journal of Computing in Civil Engineering, Vol. 12, No. 1, pp. 48~56. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(48)
  11. Robertson, P. K. and Wride, C. E. (1998), Evaluating cyclic liquefaction potential using the cone penetration test, Canadian geotechnical journal, Vol. 35, No. 3, pp. 442~459. https://doi.org/10.1139/t98-017
  12. Seed, H. B. and Idriss, I. M. (1971), Simplified procedure for evaluating soil liquefaction potential, J. Soil Mechanics and Foundations Div, ASCE, Vol. 97, No. 9, pp. 1249~273. https://doi.org/10.1061/JSFEAQ.0001662
  13. Seed, H. B. and Idriss, I. M. (1981), Evaluation of Liquefaction Potential of Sand Deposits Based on Observations of Performance in Previous Earthquakes, Session on In SituTesting to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, October.
  14. Seed, H. B., Tokimatsu, K., Harder, L. F. Jr. and Chung, R. (1984), The Influence of SPT Procedures on Soil Liquefaction Resistance Evaluations, Report No. UCB/EERC-84/15, Earthquake Engineering Research Center, University of California at Berkeley.
  15. Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B. and Stokoe, K. H. (2001), Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, J. Geotechnical and Geoenvironmental Eng., ASCE, Vol. 127, No. 10, pp. 817~833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  16. Zhou, S. (1980), Evaluation of the liquefaction of sand by static cone penetration test, 7th World Conference on Earthquake Engineering, Istanbul, Turkey, Vol. 3, pp. 156~162.