DOI QR코드

DOI QR Code

An Experimental Study on the Flexural Strength of Lap Spliced Ultra High Strength Fiber Reinforced Concrete Beams

이음된 초고강도 강섬유보강콘크리트 보의 휨강도에 관한 실험적 연구

  • 배백일 (한양사이버대학교, 디지털건축도시공학과) ;
  • 손동희 (한양대학교, 건축공학부) ;
  • 최현기 (경남대학교, 소방방재공학과) ;
  • 정형석 (경남대학교, 소방방재공학과) ;
  • 최창식 (한양대학교, 건축공학부)
  • Received : 2021.10.01
  • Accepted : 2021.10.19
  • Published : 2021.12.31

Abstract

This study examines the bending behavior of lap-spliced ultra-high-strength fiber-reinforced concrete members and evaluates the safety of the design codes for ultra-high-strength fiber-reinforced concrete structures. An experiment on a total of six beams was performed. The main variables were the fiber-inclusion and the lap-spliced length at the center of the beams. The steel fibers in a volume fraction of 2% were used, and the lap-splice lengths were determined to be 8db and 16db. As a result of the test, the specimens not reinforced with fiber lost abrupt load-bearing capacity at the lap region and did not experience yielding of the reinforcing bar. In the case of fiber-reinforced concrete, if a lap-splice length of 16db is secured, the yielding of the main reinforcing bar can be experienced, and appropriate flexural strength can be expressed. Based on the experimental results of this study, as a result of reviewing the lap-splice length calculation formulas of the current design standards and the ultra-high-strength concrete structural design recommendations, it was found that all of them were evaluated conservatively.

본 연구에서는 이음된 초고강도 강섬유보강콘크리트 부재의 휨거동을 검토하고, 현행설계기준의 초고강도 강섬유보강콘크리트 구조물의 이음 설계에 대한 안전성을 평가하기 위해 총 6개의 보에 대한 가력 실험을 수행하였다. 주요 변수는 섬유의 혼입여부와 이음 길이로 설정하였다. 혼입된 섬유는 강섬유로 2%의 부피비로 결정하였으며, 이음길이는 8db와 16db로 결정하여 실험체를 제작하였다. 실험 결과 섬유로 보강되지 않은 실험체들은 이음부에서 급격한 하중지지능력을 상실하고 철근의 항복을 경험하지 못하였으나, 섬유로 보강된 경우 16db의 이음길이가 확보되면 주인장철근의 항복을 경험할 수 있으며, 적절한 휨강도를 발현할 수 있는 것으로 나타났다. 본 연구의 실험결과를 바탕으로 현행설계기준 및 초고강도콘크리트 구조설계지침의 이음길이 산정식들을 검토한 결과 모두 보수적인 평가를 하고 있는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한양사이버대학교의 연구비 지원으로 이루어짐.

References

  1. Chen, L., and Graybeal, B. A. (2012), Modeling structural performance of second-generation ultrahigh-performance concrete pi-girders. Journal of Bridge Engineering, 17(4), 634-643. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000301
  2. Richard, P., and Cheyrezy, M. H. (1994), Reactive powder concretes with high ductility and 200-800 MPa compressive strength. Special Publication, 144, 507-518.
  3. Choi, Jeong-Il, Koh, Kyung-Taek, and Lee, Bang-Yeon. (2015), Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers. Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 49-56 https://doi.org/10.11112/JKSMI.2015.19.4.049
  4. Tepfers, R. (1979), Cracking of concrete cover along anchored deformed reinforcing bars. Magazine of Concrete Research, 31(106), 3-12. https://doi.org/10.1680/macr.1979.31.106.3
  5. Holschemacher, K., Weisse, D., and Klotz, S. (2004), Bond of reinforcement in ultra high strength concrete. In Proceedings of the International Symposium on UHPC, Kassel, Germany, 375-387.
  6. Rilem, T. C. (1994), RC 6 Bond test for reinforcement steel. 2. Pull-out test, 1983. RILEM recommendations for the testing and use of constructions materials, 218-220.
  7. Saleem, M. A., Mirmiran, A., Xia, J., and Mackie, K. (2013), Development length of high-strength steel rebar in ultrahigh performance concrete. Journal of Materials in Civil Engineering, 25(8), 991-998. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000571
  8. Bae, B. I., Choi, H. K., and Choi, C. S. (2016), Bond stress between conventional reinforcement and steel fibre reinforced reactive powder concrete. Construction and Building Materials, 112, 825-835. https://doi.org/10.1016/j.conbuildmat.2016.02.118
  9. Lee, H. J., Chung, C. H., Shin, D. H., Park, S. J., and Kim, I. G. (2017), Evaluation on Structural Performance of Precast Bridge Deck Joint using HSFRC. Journal of the Korea institute for Structural Maintenance and Inspection, 21(6), 196-205. https://doi.org/10.11112/JKSMI.2017.21.6.196
  10. Kim, S., Lee, J., Joh, C., and Kwahk, I. (2016), Flexural Bond Behavior of Rebar in Ultra-High Performance Concrete Beams Considering Lap-Splice Length and Cover Depth. Engineering, 8(03), 116. https://doi.org/10.4236/eng.2016.83013
  11. KCI (2017) KCI Model Code 2017. Seoul, Korea; Kimoondang Publishing Company. Korea Concrete Institute(KCI), 637(In Korean)
  12. Code, P. (2005), Eurocode 2: design of concrete structures-part 1-1: general rules and rules for buildings. British Standard Institution, London.
  13. Korea Concrete Institute (2012) Design Guidelines for K-UHPC, KCI-M-12-003, Korea, 1-66.
  14. AFGC(Association Francaise de Genie Civil) (2013) Interim Recommendations, Ultra High Performance Fibre Reinforced Concretes, France, 358.