• Title/Summary/Keyword: disaster collection management

Search Result 58, Processing Time 0.025 seconds

A Study on the Use of Scientific Investigation Equipment to Support Decision-making of the Resident Evacuation in the Event of a Chemical Accident (화학사고 발생에 따른 주민대피 의사결정 지원을 위한 과학조사장비 활용방안 연구)

  • Oh, Joo-Yeon;Lee, Tae Wook;Cho, Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1817-1826
    • /
    • 2022
  • After the hydrogen fluoride leak in Gumi in 2012, the government has been systemizing the disaster management system, such as responding to and managing chemical accidents. In particular, the Ministry of the Interior and Safety (MOIS) is in charge of evacuation of residents following chemical accidents based on the Framework Act on Management of Disaster and Safety. In this study, an application plan was presented to support and utilize the decision-making support for evacuation of residents after a chemical accident using the chemical accident investigation equipment of the National Disaster Management Research Institute (NDMI). In the equipment operation system for scientific information collection due to chemical accidents, the roles and purpose of use of long/short distance measurement equipment were presented according to regular and emergency situations. Using the data acquired through long/short distance measurement equipment, it can be used as basic data for resident evacuation decision-making by monitoring whether chemicals are detected in an emergency and managing data on detected substances by company in a regular situation. As a result of measuring chemical substances in order to verify on-site usability by equipment only for the regular operation system, it was confirmed that real-time detection of chemical substances is possible with long distance measuring equipment. In addition, it was confirmed that it was necessary to check the measurable distance and range of the equipment in the future. In the case of short distance measurement equipment, hydrocarbon-based substances were mainly detected, and it was confirmed that it was measured at a higher level in Ulsan-Mipo National Industrial Complex than in Onsan National Industrial Complex. It is expected that it can be used as basic data to support decision-making in the event of chemical accidents through continuous data construction in the future.

Environment Monitoring System Using RF Sensor (RF 센서를 이용한 해양 환경 관리 시스템)

  • Cha, Jin-Man;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.896-898
    • /
    • 2012
  • Recently, many countries are making efforts for the development of ocean resources because the necessity and importance of the ocean resources are increased. Underwater sensor networks have emerged as a very powerful technique for many applications, including monitoring, measurement, surveillance and control and envisioned to enable applications for oceanographic data collection, ocean sampling, environmental and pollution monitoring, offshore exploration, disaster prevention, tsunami and seaquake warning, assisted navigation, distributed tactical surveillance, and mine reconnaissance. The idea of applying sensor networks into underwater environments (i.e., forming underwater sensor networks) has received increasing interests in monitoring aquatic environments for scientific, environmental, commercial, safety, and military reasons. The data obtained by observing around the environment are wireless-transmitted by a radio set with various waves. According to the technical development of the medium set, some parameters restricted in observing the ocean have been gradually developed with the solution of power, distance, and corrosion and watertight by the seawater. The actual matters such as variety of required data, real-time observation, and data transmission, however, have not enough been improved just as various telecommunication systems on the land. In this paper, a wireless management system will be studied through a setup of wireless network available at fishery around the coast, real-time environmental observation with RF sensor, and data collection by a sensing device at the coastal areas.

  • PDF

A Study on the Establishment of the Safe Kindergarten Connecting a Home and Disaster Preparedness(Life Safety) for Infants (유아 재난 대비(생활 안전) 및 가정과 연계 유치원 안전 체계 구축 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • The Service Platform for going to Kindergarten configured with Beacon Devices, Gateway attached to the BUS, Mobile Communication Network, and Application Server. In this paper, We understand the need for Commuting Kindergarten Services, And interface to Specification of Kindergartener's Beacon Identification, And so design to Gateway Resource Tree Functions. For the Service Interfacing, Commute alerts handled in Parental Cellphone through APP. The Service Platform can check the registered beacon data collection and operation management function.

A Preliminary Study on the Development of the COVID-19 Documentation Strategy for University Archives (대학기록관의 코로나19 도큐멘테이션 전략 개발을 위한 예비연구)

  • Kim, Gaeun;Lee, Jongwook
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.1
    • /
    • pp.159-176
    • /
    • 2022
  • This study aims to develop a COVID-19 documentation strategy for university archives, which will act as a response system to infectious diseases. The study applied the phases of "documentation area definition and preliminary analysis" and "documentation strategy drafting" described in Heckman's documentation strategy model. In defining the documentation area and doing preliminary analysis, the author analyzed the cases of COVID-19 documentation projects at overseas university archives and conducted interviews with stakeholders. In drafting the documentation strategy, the author interviewed three archivists working in university archives. From these findings, the documentation strategy plan was developed and revised based on the feedback from archivists. The strategy plan covers the documentation purpose, subject/functional area, group, reference information, and major considerations. The findings of this study might be useful for figuring out ways to secure records related to COVID-19 or other infectious diseases in university archives.

A Review on the Management of Water Resources Information based on Big Data and Cloud Computing (빅 데이터와 클라우드 컴퓨팅 기반의 수자원 정보 관리 방안에 관한 검토)

  • Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2016
  • In recent, the direction of water resources policy is changing from the typical plan for water use and flood control to the sustainable water resources management to improve the quality of life. This change makes the information related to water resources such as data collection, management, and supply is becoming an important concern for decision making of water resources policy. We had analyzed the structured data according to the purpose of providing information on water resources. However, the recent trend is big data and cloud computing which can create new values by linking unstructured data with structured data. Therefore, the trend for the management of water resources information is also changing. According to the paradigm change of information management, this study tried to suggest an application of big data and cloud computing in water resources field for efficient management and use of water. We examined the current state and direction of policy related to water resources information in Korea and an other country. Then we connected volume, velocity and variety which are the three basic components of big data with veracity and value which are additionally mentioned recently. And we discussed the rapid and flexible countermeasures about changes of consumer and increasing big data related to water resources via cloud computing. In the future, the management of water resources information should go to the direction which can enhance the value(Value) of water resources information by big data and cloud computing based on the amount of data(Volume), the speed of data processing(Velocity), the number of types of data(Variety). Also it should enhance the value(Value) of water resources information by the fusion of water and other areas and by the production of accurate information(Veracity) required for water management and prevention of disaster and for protection of life and property.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.

Study of Information Maintenance Components in Wireless Network Environment based on Sensors (센서기반 무선 네트워크 환경에서 정보 유지관리에 관한 구성요소 연구)

  • Lee, Hyun-Chang;Xu, Chen-Lin;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2640-2644
    • /
    • 2014
  • With the development of technology, wireless sensor networks (WSN) are wireless networks of consisting a large number of small and low-cost sensors. Wireless sensor networks facilitate collaboration to achieve the perception of information collection, processing and transmission tasks in deployment area. They have various purposes such as military, disaster relief, medical rescue, environmental monitoring, precision farming and manufacturing industry etc. Therefore, technologies for data maintaining technologies in sensor network environment is one of essential parts of sensor networks. In this paper, we present the essential particulars about data management technology at wireless sensor network environments and propound the issues. Further, we could organize and develop a systematic approach in solving the issues.

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar III. 2-D Flood Inundation Simulation (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 III. 2차원 홍수범람 모의)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.347-362
    • /
    • 2006
  • In this study, a 2-D flood inundation model was developed to evaluate the impact of levee failure in a natural basin for flood analysis. The model was applied to analyze the inundation flow from the levee break of Gamcheon river during the typhoon Rusa on October 31 through September 1, 2002. To verify the simulated results, wide range field surveys have been performed including the collection of NGIS database, land use condition, flooded area, and flow depths. Velocity distributions and inundation depths were presented to demonstrate the robustness of the model. Model results have good agreements with the observed data in terms of flood level and flooded area. The model is able to compute maximum stage and peak discharge efficiently in channel and protected lowland. Methodology considering radar-rainfall estimation using cokriging scheme, flood-runoff and inundation analysis in this study will contribute to the establishment of the national integrated flood disaster prevention system and the river or protect lowland management system.

Evaluation System of Flood Damages using Stream Stage (하천수위에 의한 침수피해 평가 시스템)

  • Kim, Jong-Soon;Lee, Young-Dai;Oh, Kook-Yul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.151-158
    • /
    • 2009
  • Many people have been suffering and loosing their property from inundation due to concentrated rain and massive storm. Although, river banks are strengthened and pumping stations are constructed to protect the life and property of people, the flood damages (disaster)could not be controlled, in fact it is increasing. In USA, CWMS (Corps Water Management System) has very good system of integration of study of rainfall data, computation of stream stage and simulation of flood damages, but there is lack of this type of study and analysis in the domestic context, so we have been facing many difficulties in simulation of flood damages. Therefore, a systematic collecting of data analysis and evaluation of flood damages is necessary. The main objective of this study is to suggest a systematic data collection and evaluation method, which could be useful to prevent the life and property from unusual damages. In this study, the system (Flood Damage Evaluation Model; K-FDEM) is proposed to evaluate the flood damages from rainfall with considering many field parameters.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.