• Title/Summary/Keyword: direct transport

Search Result 448, Processing Time 0.024 seconds

A SYSTEMS ASSESSMENT FOR THE KOREAN ADVANCED NUCLEAR FUEL CYCLE CONCEPT FROM THE PERSPECTIVE OF RADIOLOGICAL IMPACT

  • Yoon, Ji-Hae;Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.17-36
    • /
    • 2010
  • In this study, we compare the mass release rates of radionuclides(1) from waste forms arising from the KIEP-21 pyroprocessing system with (2) those from the directly-disposed pressurized-water reactor spent fuel, to investigate the potential radiological and environmental impacts. In both cases, most actinides and their daughters have been observed to remain in the vicinity of waste packages as precipitates because of their low solubility. The effects of the waste-form alteration rate on the release of radionuclides from the engineered-barrier boundary have been found to be significant, especially for congruently released radionuclides. the total mass release rate of radionuclides from direct disposal concept is similar to those from the pyroprocessing disposal concept. While the mass release rates for most radionuclides would decrease to negligible levels due to radioactive decay while in the engineered barriers and the surrounding host rock in both cases even without assuming any dilution or dispersal mechanisms during their transport, significant mass release rates for three fission-product radionuclides, $^{129}I$, $^{79}Se$, and $^{36}Cl$, are observed at the 1,000-m location in the host rock. For these three radionuclides, we need to account for dilution/dispersal in the geosphere and the biosphere to confirm finally that the repository would achieve sufficient level of radiological safety. This can be done only after we have known where the repository site would by sited. the footprint of repository for the KIEP-21 system is about one tenth of those for the direct disposal.

Freight Transport Demand and Economic Benefit Analysis for Automated Freight Transport System: Focused on GILC in Busan (인터모달 자동화물운송시스템 도입을 위한 화물운송수요 및 사업편익분석 - 부산 국제산업물류도시를 중심으로-)

  • SHIN, Seungjin;ROH, Hong-Seung;HUR, Sung Ho;KIM, Donghyun
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.3
    • /
    • pp.17-34
    • /
    • 2017
  • This study aims to analyze the freight transport demand and benefit for the introduction of an automated freight transport system focusing on the Global Industry and Logistics City (GILC) in Busan. In pursuit of this aim, four alternatives were calculated - using the freight volume estimating methods and included, the number of businesses, the number of employees set up, future estimated cargo volume, and switched volume from other transport modes into the GILC. Economic benefits were analyzed against social benefits and costs accordingly. The result of the freight transport demand forecast found, the cargo volume of "Alternative 2-1" to be the most advantageous, applying the number of employee unit method and proportion of employees in Gangseo-gu, Busan. In addition to the conventional analysis of direct benefit items (reduction of transport time, traffic accidents and environmental costs), this study also considered additional benefit items (congestion costs savings, and road maintenance costs in terms of opportunity cost). It also considered advanced value for money research in guidance on rail appraisal of U.K, Federal Transport Infrastructure Plan 2003 of Germany, and RailDec of the United States. The study aims to further contribute to estimating minimum cargo transport demands and assess the economic feasibility of the introduction of new intermodal automated freight transport systems in the future.

A Study on Effective Analysis Method of ITS(A Case of SUWON) (ITS 사업의 효과분석 방법론에 관한 연구(수원시를 중심으로))

  • Lee, Choul-Ki;Oh, Young-Tae;Lee, Hwan-Pil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.81-94
    • /
    • 2007
  • In order to solve the traffic problem which comes to be serious at day, the impotance of Intelligent Transport Systems(ITS) that accomplish information gathering, information processing, information offering with up-to-date scientific techniques is coming to be high. But many local self-government group want to solve the traffic problems with introduction of ITS, however, it is a actual condition where the systematic effective analysis is insufficient. This study establishes the methodology of effective analysis as introduction of ITS, which refers to the inside and outside of the country instance. And then, this research accomplishes direct and indirect effective analysis with the case study. As a result of SUWON ITS introduction effect analysis, the travel speed of TRC mode is increased 31%, and the delay of TRC mode is diminished 43.9% than before introducing case. Most of the citizen felt the improvement effect of ITS system operation, and the majority wanted the expansion of the ITS system in survey. The analysis of economic result that B/C ratio is 5.12. So, The the effect and economic propriety of the ITS enterprise appeared with the fact that it is sufficient.

  • PDF

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

Analysis Method for Air Quality Improvement Effect of Transport and Environment Policy (교통환경정책의 대기질 개선효과 분석 방법론 연구)

  • LEE, Gunwoo;HAHN, Jin-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2017
  • This study proposes an analysis methodology for air quality improvement effect of transport and environment policy that are used for mobile pollution sources. The methodology considers the changes of traffic of road transport sources and air pollutant emission, the changes of atmospheric dispersion of air pollutants and the effects on the health of local residents in response to policy implementation. Especially, the changes to traffic flow must be considered in evaluating the effects on atmospheric environment as it has a direct connection to the effects of the policy in this study. We used bottom-up approach (BUA) based on the travel demand model to reflect the changes of travel behavior in detail in response to the policy implementation compared to the top-down approach (TDA) when calculating the changes of emission level of road transport. We showed the applicability of the proposed analysis methodology through a policy scenario analysis, and the analysis method can be effectively applied to the cases in which travelers' behavior changes are expected.

A Study on the prospect of Sea & Air multi-transport in the perspective of international logistics environment

  • Chung, Tae-Won;Han, Jong-Khil
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.587-594
    • /
    • 2010
  • The positive and negative opinion to cargo demand of Incheon's SAMT in the near future remains cloudy. Considering port and shipping environmental changes and the logistics situation of China which explains the lack of facilities in Chinese airports, the creating of SAMT cargoes of the Incheon region could catches a favorable opportunity to be a logistics hub in the North-East Asia. On the other hand, as open-sky policy and direct-call service has been carried out between China and N.A.(North America), Incheon could cause a loss of competitiveness in SAMT because the enhancement in the aspect of the connectivity of Chinese airlines and shipping lines makes customer sent to last destination their cargoes whenever they want. In the same context, this paper analyses on conditions of domestic and international SAMT and proposes in this uncertainty future forecasting of SAMT of Incheon by scenario planning according to changes in integrated SAMT, measuring the likelihood of final scenario. This study shows the Sea & Air multi-transport volume will have either slight increase or decrease from the current condition. Consequently, RFS expansion and system & service improvement through strong ties with major cities in China will be required in a short run aspect. Nonetheless, we also need to take domestic & international transportation environment into account in the long run.

Development and Assessment of a Dynamic Fate and Transport Model for Lead in Multi-media Environment

  • Ha, Yeon-Jeong;Lee, Dong-Soo
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • The main objective was to develop and assess a dynamic fate and transport model for lead in air, soil, sediment, water and vegetation. Daejeon was chosen as the study area for its relatively high contamination and emission levels. The model was assessed by comparing model predictions with measured concentrations in multi-media and atmospheric deposition flux. Given a lead concentration in air, the model could predict the concentrations in water and soil within a factor of five. Sensitivity analysis indicated that effective compartment volumes, rain intensity, scavenging ratio, run off, and foliar uptake were critical to accurate model prediction. Important implications include that restriction of air emission may be necessary in the future to protect the soil quality objective as the contamination level in soil is predicted to steadily increase at the present emission level and that direct discharge of lead into the water body was insignificant as compared to atmospheric deposition fluxes. The results strongly indicated that atmospheric emission governs the quality of the whole environment. Use of the model developed in this study would provide quantitative and integrated understanding of the cross-media characteristics and assessment of the relationships of the contamination levels among the multi-media environment.

Analysis of Transport Parameters in an Interacting Two-Band Model with Application to $p^{+}$-GaAs

  • Kim, B.W.;Majerfeld, A.
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.17-43
    • /
    • 1995
  • We present a comprehensive derivation of the transport of holes involving an interacting two-valence-band system in terms of a generalized relaxation time approach. We sole a pair of semiclassical Boltzmann equations in a general way first, and then employ the conventional relaxation time concept to simplify the results. For polar optical phonon scattering, we develop a simple method th compensate for the inherent deficiencies in the relaxation time concept and apply it to calculate effective relaxation times separately for each band. Also, formulas for scattering rates and momentum relaxation times for the two-band model are presented for all the major scattering mechanisms for p-type GaAs for simple, practical mobility calculations. Finally, in the newly proposed theoretical frame-work, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain a direct comparison between the theory and recent available experimental results, which would stimulate further analysis toward better understanding of the complex transport properties of the valence band. The calculated Hall mobilities show a general agreement with our experimental data for carbon doped p-GaAs samples in a range of degenerate hole densities. The calculated Hall factors show $r_H$=1.25~1.75 over all hole densities($2{\times}10^{17}{\sim}1{\times}10^{20}cm^{-3}$ considered in the calculations.

  • PDF

Transport Properties of Conversion Materials for Digital Radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.250-254
    • /
    • 2007
  • Applying the moving photo-carrier grating(MPG) technique and time-of-flight(TOF) measurements, we studied the transport properties of stabilized amorphous selenium typical of the material used in direct conversion X-ray imaging devices. For MPG measurement, we obtained electron and hole mobility and the recombination lifetime of $\alpha-Se$ films with arsenic(As) additions. We found an apparent increase in hole drift mobility and recombination lifetime, especially when 0.3 % As was added into $\alpha-Se$ film, whereas electron mobility decreased with the addition of As due to the defect density. For TOF measurement, a laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of $\alpha-Se$ with a thickness of 400 ${\mu}m$. The measured hole and electron transit times were about 8.73 ${\mu}s$ and 229.17 ${\mu}s$, respectively.

Optimal location of Batcher Plant using Modified Steiner point (수정된 Steiner Point를 이용한 Batcher Plant의 최적 위치 선정)

  • Ha, Kwon-Yeol;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.39-46
    • /
    • 2015
  • REMICON(Ready Mixed Concrete), the most essential material of construction work, is produced from facility called "Batcher plant." In order to produce Remicon, Batcher Plant needs to be supplied with basic raw material such as ballast, sand, cement, admixture and water. In remicon industry, overland transport vehicles are used during the whole manufacturing process from producing to infilling at the construction site. Thus, the transportation cost sums up be to 20 percent of whole manufacturing cost and transport capacity and distance travelled have direct and major effect on manufacturing costs. This paper suggests a method to find optimal location of batcher plant using modified Steiner point, suggesting the most effective and flexible connection through among construction site, aggregate, cement and remicon producing plant. This paper also proposes reducing of transport cost at maximum 60% by calculation through optimized plant location. The modified Steiner point theory proposed in this paper also can be applied to optimal location of a $2^{ry}$ substation or MCC panel for minimizing of power loss, voltage drop, line distance and etc.