Analysis of Transport Parameters in an Interacting Two-Band Model with Application to $p^{+}$-GaAs

  • Kim, B.W. (ETRI) ;
  • Majerfeld, A. (Department of Electrical and Computer Engineering of University of Colorado)
  • Published : 1995.10.20

Abstract

We present a comprehensive derivation of the transport of holes involving an interacting two-valence-band system in terms of a generalized relaxation time approach. We sole a pair of semiclassical Boltzmann equations in a general way first, and then employ the conventional relaxation time concept to simplify the results. For polar optical phonon scattering, we develop a simple method th compensate for the inherent deficiencies in the relaxation time concept and apply it to calculate effective relaxation times separately for each band. Also, formulas for scattering rates and momentum relaxation times for the two-band model are presented for all the major scattering mechanisms for p-type GaAs for simple, practical mobility calculations. Finally, in the newly proposed theoretical frame-work, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain a direct comparison between the theory and recent available experimental results, which would stimulate further analysis toward better understanding of the complex transport properties of the valence band. The calculated Hall mobilities show a general agreement with our experimental data for carbon doped p-GaAs samples in a range of degenerate hole densities. The calculated Hall factors show $r_H$=1.25~1.75 over all hole densities($2{\times}10^{17}{\sim}1{\times}10^{20}cm^{-3}$ considered in the calculations.

Keywords

References

  1. Electron Transport in Compound Semiconductors Nag, B.R.
  2. Electrical Characterization of GaAs Materials and Devices Look, D.C.
  3. J. Appl. Phys. v.68 no.5 Heavily doped GaAs:Se. II. Electron mobility Szmyd, D.M.;Hanna, M.C.;Majerfeld, A.
  4. J. Appl. Phys. v.67 no.12 Scattering rates for holes near the valence-band edge in semiconductors Brudevoll, T.;Fjeldly, T.A.;Baek, J.;Shur, M.S.
  5. Phys. Stat. Sol. (b) v.58 Scattering probabilities for holes Costato, M.;Reggiani, L.
  6. Phys. Stat. Sol. (b) v.52 Hole transport in polar semiconductors Costato, M.;Jacoboni, C.;Reggiani, L.
  7. Mobility of holes in III-V compounds;Semiconductors and Semimetals, Vol. 10 Wiley, J.D.
  8. Z. Phys. v.125 Transporterscheinungen im elektronengas Kohler, M.
  9. Proc. Roy. Soc. London v.A219 The theory of electronic conduction in polar semiconductors Howarth, D.J.;Sondheimer, E.H.
  10. J. Phys. Chem. Solids v.2 Electron scattering in InSb Ehrenreich, H.
  11. J. Phys. Chem. Solids v.9 Transport of electron in intrinsic InSb Ehrenreich, H.
  12. Phys. Rev. v.2 no.4 Electron mobility in direct-gap polar semiconductors Rode, D.L.
  13. Phys. Rev. v.3 no.8 Electron transport in GaAs Rode, D.L.;Knight, S.
  14. Phys. Rev. B v.32 no.2 Hole mobility of GaAs, GaP, and $GaAs_{1-X}P_X$ mixed-compound semiconductrors Takeda, K.;Matsumoto, N.;Taguchi, A.;Taki, H.;Ohta, E.;Sakata, M.
  15. Phys. Rev. B v.29 no.10 Theory of high-field transport of holes in GaAs and InP Brennan, K.;Hess, K.
  16. Phys. Rev. B v.4 no.8 Polar mobility of holes in III-V compounds Wiley, J.D.
  17. Proc. of the Conference on Semi-Insulating III-V Materials Walukiewicz, W.;Pawlowicz, L.;Lagowski, J.;Gatos, H.C.;Ebeid, S.M.(ed.);Tuck, B.(ed.)
  18. Phys. Rev. B v.41 no.14 Carrier scattering by naive defects in heavily doped semiconductors Walukiewicz, W.
  19. Phys. Stat. Sol. (b) v.50 Polar mobility of electrons and holes Kranzer, D.
  20. J. Phys. C: Solid State Phys. v.6 Hall and drift mobility of polar p-type semiconductors: I. Theory Kranzer, D.
  21. Phys. Rev. v.132 no.1 Galvanomagnetic studies of degenerate gallium-doped germanium: nonparabolic energy bands with variable warping Bernard, W.;Roth, H.;Straub, W.D.
  22. J. Appl. Phys. v.69 no.10 Majority and minority electron and hole mobilities in heavily doped GaAs Lowney, J.R.;Bennett, H.S.
  23. J. Appl. Phys. v.71 no.5 Calculated majority- and minority-carrier mobilities in heavily doped silicon and comparisons with experiment Bennett, H.S.;Lowney, J.R.
  24. J. Appl. Phys. v.54 no.8 Hole transport in pure and doped GaAs Lee, H.J.;Look, D.C.
  25. Appl. Phys. Lett. v.58 Very high carbon incorporation in metalorganic vapor phase epitaxy of heavily doped p-type GaAs Hanna, M.C.;Lu, Z.H.;Majerfeld, A.
  26. Appl. Phys. Lett. v.55 Ultrahigh doping of GaAs by carbon during metalorganic molecular beam epitaxy Abernathy, C.R.;Pearton, S.J.;Caruso, R.;Ren, F.;Kovalchik, J.
  27. Electronics Lett. v.27 Yang, L.W.;Wright, P.D.;Brusenback, P.R.;Ko, S.K.;Kaleta, A.;Lu, Z.H.;Majerfeld, A.
  28. J. Appl. Phys. v.77 no.9 Electronic and intersubband optical properties for p-type GaAs/AlGaAs superlattices for infrared photodetectors Kim, B.W.;Majerfeld, A.
  29. Proc. of the First International Symposium on Long Wavelength Infrared Detectors, 184th Electrochemical Society Meeting Majerfeld, A.;Lu, Z.H.;Kim, B.W.;Mao, E.;Dickey, S.A.;Oh, E.G.
  30. Phys. Rev. v.125 no.6 Interband electron-electron scattering and transport phenomena in semiconductors Appel, J.
  31. Phys. Rev. v.83 Scattering by ionized impurities in semiconductors Brooks, H.;Herring, C.
  32. Phys. Rev. B v.51 no.3 Analysis of ionizedimpurity-scattering relaxation time andmobility by the phase-shift method for two interacting valence bands Kim, B.W.;Majerfeld, A.
  33. Phys. Rev. v.166 no.3 Symmetry principles in the theory of transport properties with special reference to p-type germanium Lawaetz, P.
  34. Phys. Rev. B v.26 no.4 Angular dependence of hole-acoustic-phonon transition rates in silicon Szmulowicz, F.;Madarasz, F.L.
  35. Phys. Rev. B v.27 no.4 Deformationpotential-theory calculation of the acousticphonon-limited conductivity and Hall mobilities for p-type silicon Szmulowicz, F.;Madarasz, F.L.
  36. Phys. Rev. B v.27 no.10 Full-Boltzmann-equation solutions of the acousticphonon-limited conductivity and Hall mobilities for p-type silicon and germanium Szmulowicz, F.;Madarasz, F.L.
  37. Phys. Rev. B v.28 no.10 Calculation for optical- and acoustic-phonon-limited conductivity and Hall mobilities for p-type silicon and germanium Szmulowicz, F.
  38. Appl. Phys. Lett. v.43 no.5 Acoustic and optical-phononlimited mobilities in p-type silicon within the deformation-potential theory Szmulowicz, F.
  39. Phys. Rev. B v.34 no.6 Calculation of the mobility and the Hall factor for doped p-type silicon Szmulowicz, F.
  40. J. Appl. Phys. v.76 no.7 Monte Carlo studies of ohmic hole mobility in silicon and germanium: Examination of the optical phonon deformation potential Hinckley, J.M.;Singh, J.
  41. Phys. Rev. B v.49 no.19 Effect of valence-band anisotropy and nonparabolicity on total scattering rates for holes in nonpolar semiconductors Dr, M.;Unterrainer, K.;Gornik, E.
  42. Key Papers in Physics Gallium Arsenide Blakemore, J.S.;Blakemore, J.S.(ed.)
  43. Principles of the Theory of Solids Ziman, J.M.
  44. J. Phys. Chem. Solids v.1 Energy band structure in p-type germanium and silicon Kane, E.O.
  45. J. Appl. Phys. v.72 no.3 Characterization of heavily carbon-doped GaAs grown by metalorganic chemical vapor deposition and metalorganic molecular beam epitaxy Stokman, S.A.;Hofler, G.E.;Baillargeon, J.N.;Hsieh, K.C.;Cheng, K.Y.;Stillman, G.E.