DOI QR코드

DOI QR Code

Analysis Method for Air Quality Improvement Effect of Transport and Environment Policy

교통환경정책의 대기질 개선효과 분석 방법론 연구

  • Received : 2016.11.08
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

This study proposes an analysis methodology for air quality improvement effect of transport and environment policy that are used for mobile pollution sources. The methodology considers the changes of traffic of road transport sources and air pollutant emission, the changes of atmospheric dispersion of air pollutants and the effects on the health of local residents in response to policy implementation. Especially, the changes to traffic flow must be considered in evaluating the effects on atmospheric environment as it has a direct connection to the effects of the policy in this study. We used bottom-up approach (BUA) based on the travel demand model to reflect the changes of travel behavior in detail in response to the policy implementation compared to the top-down approach (TDA) when calculating the changes of emission level of road transport. We showed the applicability of the proposed analysis methodology through a policy scenario analysis, and the analysis method can be effectively applied to the cases in which travelers' behavior changes are expected.

본 연구에서는 도로이동오염원을 대상으로 추진하는 교통환경정책의 대기질 개선효과 분석 방법론을 제시하였으며, 해당 방법론은 정책 추진에 따른 도로이동오염원의 통행량과 대기오염물질 배출량 변화, 대기오염물질의 공간적 확산과 이로 인한 노출인구의 건강영향을 순차적으로 고려한다. 특히 도로이동오염원의 통행량 변화는 정책 효과와 직접적인 연관이 있기 때문에 대기질 개선효과 분석시 반드시 고려되어야 하며, 본 연구에서는 교통수요모형 기반의 상향식 방법을 적용하여 기존 하향식 방법 대비 정책 추진에 따른 통행자의 통행행태 변화를 상세하게 반영하고자 하였다. 정책 시나리오 분석을 통하여 본 연구에서 제시한 분석 방법론의 활용가능성을 검토하였으며, 통행자의 통행행태 변화가 예상되는 정책의 대기질 개선효과 분석은 본 연구의 분석 방법론 적용이 필요한 것으로 판단된다.

Keywords

References

  1. Batterman S., Ganguly R., Isakov V., Burke J., Arunachalam S., Snyder M., Robins T., Lewis T. (2014), Dispersion Modelling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children With Asthma in Detroit, Michigan, Transp Res Rec, 2452, 105-112. https://doi.org/10.3141/2452-13
  2. Borrego C., Tchepel O., Barros N., Miranda A. I. (2000), Impact of Road Traffic Emissions on Air Quality of the Lisbon Region, Atmospheric Environment, 34, 4683-4690. https://doi.org/10.1016/S1352-2310(00)00301-0
  3. Borrego C., Tchepel O., Costa A. M., Amorim J. H., Miranda A. I. (2003), Emission and dispersion modelling of Lisbon air quality at local scale, Atmospheric Environment, 37, 5197-5205. https://doi.org/10.1016/j.atmosenv.2003.09.004
  4. Choi K. C., Lee K. J., Ahn S. C. (2009), An Improvement of Bottom Up Approach for Estimating the Mobile Emission Level, J. Korean Soc. Transp., 27(4), Korean Society of Transportation, 183-193.
  5. Cook R., Isakov V., Touma J. S., Benjey W., Thurman J., Kinnee E., Ensley D. (2008), Resolving Local-Scale Emissions for Modeling Air Quality near Roadways, Journal of the Air & Waste Management Association, 58(3), 451-461. https://doi.org/10.3155/1047-3289.58.3.451
  6. EPA (2004a), AERMOD, Description of Model Formulation.
  7. EPA (2004b), User's Guide for the AMS/EPA Regulatory Model-AERMOD.
  8. EPA (2008), Emission and Air Quality Modeling Tools for Near-Roadway Applications.
  9. EPA (2015), BenMAP-CE User's Manual.
  10. Hatzopoulou M., Miller E. J. (2010), Linking an Activity-based Travel Demand Model With Traffic Emission and Dispersion Models: Transport's Contribution to Air Pollution in Toronto, Transportation Research Part D, 15, 315-325. https://doi.org/10.1016/j.trd.2010.03.007
  11. Hu H. J., Barlow T., Lee Y. H., Cho H. J., Kim M. G. (2013), Developing a Roadside Air Quality Assessment Methodology Using Seoul Air Quality Monitoring Data, Seoul Studies, 14(2), 115-129.
  12. James P., Ito K., Buonocore J. J., Levy J. I., Arcaya M. C. (2014), A Health Impact Assessment of Proposed Public Transit Service Cuts and Fare Increases in Boston Massachusetts, Int. J. Environ. Res. Public Health, 11(8), 8010-8024. https://doi.org/10.3390/ijerph110808010
  13. Lee K. J., Choi K. C., Ryu S. K., Baek S. K. (2012), Development of O/D Based Mobile Emission Estimation Model, Journal of the Korean Society of Civil Engineers, 32(2D), 103-110. https://doi.org/10.12652/KSCE.2012.32.2D.103
  14. Liu H., Chen X., Wang Y., Han S. (2013), Vehicle Emission and Near-Road Air Quality Modeling for Shanghai, China(Based on Global Positioning System Data From Taxis and Revised MOVES Emission Inventory), Transportation Research Record, Journal of the Transportation Research Board, 2340, Transportation Research Board of the National Academies, Washington, D.C. 38-48. https://doi.org/10.3141/2340-05
  15. Park J. H., Ko J. H. (2014), Comparing Methods for Apportioning Transport CO2 Emissions to Sub-Regional Areas in Seoul, Seoul City Research, 15(4), 65-78.
  16. Park S. J., Kim H. G., Ju J. H. (2012), A Study of Long-Term Car Ownership in Korea, The Korea Transport Institute.
  17. Rader M. (2009), Health Impact Assessment on Policies Reducing Vehicle Miles Traveled in Oregon Metropolitan Areas, Upstream Public Health.
  18. Ryu B. Y., Bae S. H. (2012), Estimation of Greenhouse Gas in the Urban Area by Using Advanced Traffic Management Systems: Case study of Daejeon, Journal of Transport Research, 19(3), 119-134.
  19. Yang C. H., Koo Y. S., Kim I. S., Sung J. G. (2013), Studies on the Methodology of a Hybrid Model for Emission Dispersion Analysis, J. Korean Soc. Transp., 31(2), Korean Society of Transportation, 69-79. https://doi.org/10.7470/jkst.2013.31.2.069
  20. Yang C. H., Yang I. C., Yoon C. J., Sung J. G. (2013), Impact Analysis of Air Quality Mobile Sources Using Microscopic Emission and Dispersion Model, Journal of the Korean Society of Road Engineers, 15(4), 167-175.