• Title/Summary/Keyword: direct methanol fuel cells

Search Result 112, Processing Time 0.033 seconds

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo;Ham, Kahyun;Bong, Sungyool;Lee, Jaeyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.354-361
    • /
    • 2022
  • In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

Simulation and Validation of Methanol Crossover in DMFCs (직접메탄올 연료전지의 메탄올 크로스오버에 대한 시뮬레이션 및 검증)

  • Ko, Johan;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.1-126.1
    • /
    • 2010
  • In direct methanol fuel cells(DMFCs), it is well known that methanol crossover severely reduces the cell performance and the cell efficiency. There are a number of design and operating parameters that influence the methanol crossover. This indicates that a DMFC demands a high degree of optimization. For the successful design and operation of a DMFC system, a better understanding of methanol crossover phenomena is essential. The main objective of this study is to examine methanol-crossover phenomena in DMFCs. In this study, 1D DMFC model previously developed by Ko et al. is used. The simulation results were compared with methanol-crossover data that were measured by Eccarius et al. The numerical predictions agree well with the methanol crossover data and the model successfully captures key experimental trends.

  • PDF

Micro Fuel Cells for the Portable Applications

  • Moon, Go-Young;Lee, Won-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Due to the increasing intelligence, the increasing connectivity, and always-on characteristics energy needs for the portable electronics cannot be managed by the state-of-art battery technology. Micro fuel cell fuelled by aqueous methanol is gaining lots of interest from the new energy storage developers since it has the potential to offer the longer operation time to the portable electronic devices. Although the technical barriers to the commercialization exit, it is expected that the micro fuel cell technology bring huge benefits to the current energy storage market once it matures. In the article, benefits, challenges and market players of the direct methanol fuel cell arena is briefly reviewed.

Competitiveness of Formic Acid Fuel Cells: In Comparison with Methanol (포름산 연료전지의 경쟁력)

  • Uhm, Sunghyun;Seo, Minhye;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-127
    • /
    • 2016
  • Methanol fuel cells having advantages of relatively favorable reaction kinetics and higher energy density have attracted increasing interests as best alternative to hydrogen fuel cell because of H2 production, storage and distribution issues. While there have been extensive research works on developing key components such as electrocatalysts as well as their physicochemical properties in practical formic acid fuel cells, there have also been urgent requests for investigating which fuel sources will be more suitable for direct liquid fuel cells in future. In this mini-review, we highlight the overall interest and outlook of formic acid fuel cells in terms of electrocatalysts, fuel supply and crossover, water management, fuel cell efficiency and system integration in comparison with methanol fuel cells.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Methanol Concentration Sensor by Using Pt dot Catalyst Electrode (Pt dot 촉매전극을 활용하여 제작한 메탄올 센서)

  • Yang, Jin-Seok;Park, Jung-Ho;Park, Moon-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.505-506
    • /
    • 2008
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) dot.

  • PDF

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells (직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향)

  • Han, Chang-Hwa;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.292-298
    • /
    • 2011
  • This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF