Browse > Article

Micro Fuel Cells for the Portable Applications  

Moon, Go-Young (Corporate R & D, Research Park, LG Chem., Ltd,)
Lee, Won-Ho (Corporate R & D, Research Park, LG Chem., Ltd,)
Publication Information
Korean Membrane Journal / v.5, no.1, 2003 , pp. 1-9 More about this Journal
Abstract
Due to the increasing intelligence, the increasing connectivity, and always-on characteristics energy needs for the portable electronics cannot be managed by the state-of-art battery technology. Micro fuel cell fuelled by aqueous methanol is gaining lots of interest from the new energy storage developers since it has the potential to offer the longer operation time to the portable electronic devices. Although the technical barriers to the commercialization exit, it is expected that the micro fuel cell technology bring huge benefits to the current energy storage market once it matures. In the article, benefits, challenges and market players of the direct methanol fuel cell arena is briefly reviewed.
Keywords
direct methanol fuel cell; micro fuel cell; membrane; electrode; system miniaturization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 DTI and Carbon Trust, Review of UK fuel cell commercial potential, Feb. (2003)
2 M. P. Hogarth and T. R. Ralph, Catalysis for low temperature fuel cells, Part III: Challenges for the direct methanol fuel cell, Platinum Metals Rev., 46, 146-164 (2002)
3 C. W. Walker Jr., Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate, J. Power Sources, 110, 144-151 (2002)
4 J. Feichtinger, R. Galm, M. Walker, K-M. Baumgartner, A. Schulz, E. Rauchle, and U. Schumacher, Plasma polymerized barrier films on membranes for direct methanol fuel cells, Surf. Coatings Tech., 142-144, 181-186 (2001)
5 N. Jia, M. C. Lefebvre, J. Halfyard, Z. Qi, and P.G. Pickup, Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells, Electrochemical & Solid-State Lett., 3, 529-531 (2000)
6 J. P. Meyers and H. L. Maynard, Design considerations for miniaturized PEM fuel cells, J. Power Sources, 109, 76-88 (2002)
7 J. Yu, P. Cheng, Z. Ma, and B. Yi, Fabrication of a miniature twin fuel cell on silicon wafer, Electrochimica Acta, 48, 1537-1541 (2003)
8 A. Schmitz, M. Tranitz, S. Wagner, R. Hahn, and C. Hebling, Planar self-breathing fuel cells, J. Power Sources, 118, 162-171 (2003)
9 R. O'Hayre, T. Fabian, S.-J. Lee, and F. B. Prinz, Lateral ionic conduction in planar array fuel cells, J. The Electrochemical Soc., 150, A430-A438 (2003)
10 R. O'Hayre, D. Braithwaite, W. Hermann, S.-J.Lee, T. Fabian, S.-W. Cha, Y. Saito, and F. B. Prinz, Development of portable fuel cell arrays with printed-circuit technology, J. Power Sources,124, 459-472 (2003)
11 Fuel Cell Today, Fuel cell market survey: Portable applications, July (2003). www.fuelcelltoday.com
12 S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter,and K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Mem. Sci., 203, 215-225 (2002)
13 US Fuel Cell Council, Fuel cells for portable power: markets, manufacture and cost, January. (2003)
14 S. C. Kelley, G. A. Deluga, and W. H. Smyrl, A miniature methanol/air polymer electrolyte fuel cell, Electrochemical and Solid-State Letters, 3, 407-409 (2000)
15 K. Scott and W. M. Taama, P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Mem. Sci., 171, 119-130 (2000)
16 T. Yamaguchi, M. Ibe, B. N. Nair, and S. Nakao, A pore-filling electrolyte membrane-electrode integrated system for a direct methanol fuel cell application, J. Electrochem. Soc., 149, A1448-A1453 (2002)
17 F. Finsterwalder and G. Hambitzer, Proton conductive thin films prepared by plasma polymerization, J. Mem. Sci., 185, 105-124 (2001)
18 C. Yang, S. Srinivasan, A. S. Arico, P. Creti, and V. Baglio, Composite Nafion/Zirconium phosphate membranes for direct methanol fuel cell opration at high temperature, Electrochemical & Solid-State Lett., 4, A31-A34 (2001)
19 J. S. Wainright, R. F. Savinell, C. C. Liu, and M. Litt, Microfabricated fuel cells, Electorchimica Acta, 48, 2869-2877 (2003)
20 J. Kim, B. Kim, and B. Jung, Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers, J. Mem. Sci., 207, 129-137 (2002)
21 J. Kerres, W. Zhang, L. Jorissen, and V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC, J. New. Mat. Electrochem. Systems, 5, 97-107 (2002)
22 P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Modified Nafion-based membranes for use in direct methanol fuel cells, Solid State Ionics, 150, 115-122(2002)
23 C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell pplications, J. Mem. Sci., 206, 443-453 (2002)
24 S. C. Kelley, G. A. Deluga, and W. H. Smyrl, Miniature fuel cells fabricated on silicon substrates, AIChE J., 48, 1071-1082 (2002)
25 H. Wu, Y. Wang, and S. Wang, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New. Mat. Electrochem. Systems, 5, 251-254 (2002)
26 L. Carrette, K. A. Friedrich, and U. Stimming, Fuel cells-Fundamentals and applications, Fuel Cells, 1, 5-39 (2001)
27 Z.-G. Shao, X. Wang, and I.-M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Mem. Sci., 210, 147-153 (2002)
28 A. S. Arico, S. Srinivasan, and V. Antonucci, DMFCs: From fundamental aspects to technology development, Fuel Cells, 1, 133-161 (2001)