Browse > Article
http://dx.doi.org/10.7316/khnes.2011.22.3.292

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells  

Han, Chang-Hwa (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University)
Kim, Nam-Hoon (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University)
Lee, Joong-Hee (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.22, no.3, 2011 , pp. 292-298 More about this Journal
Abstract
This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.
Keywords
Direct methanol; Optimization; Methanol flow rate; Methanol crossover; Open circuit voltage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Ren, M. S. Wilson, S. Gottesfeld, "On direct and indirect methanol fuel cells for transportation applications," Electrochem. Soc. Proc., Vol. 95, No. 23, 1995, pp. 252.
2 A. Oedegaad, C. Hentschel, "Characterisation of a portable DMFC stack and a methanol-feeding concept", J. Power Sources, Vol. 158, No. 1, 2006, pp.177-187.   DOI   ScienceOn
3 W. Vielstich, "Handbook of Fuel Cells", Vol. 1, John Wiley and Sons Ltd., Chichester, United Kingdom, 2003, Chapter 4.
4 R. Jiang, C. Rong, D. Chu, "Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method", J. Power Sources, Vol. 126, No. 1, 2004, pp. 119-124.   DOI
5 K. Scott, W. M. Taama, P. Argyropoulos, K. Sundmacher, "The impact of mass transport and methanol crossover on the direct methanol fuel cell", J. Power Sources, Vol. 83, No. 1-2, 1999, pp. 204-216.   DOI
6 M. K. Ravikumar, A. K. Shukla, "Effect of methanol crossover in a liquid-feed polymer -electrolyte direct methanol fuel cell," J. Electrochem. Soc., Vol.143, No. 8, 1996, pp. 2601-2606.   DOI   ScienceOn
7 H. Dohle, J. Merge, D. Stolten, "Heat and power management of a direct- methanol- fuel-cell (DMFC) system", J. Power Sources, Vol. 111, No. 2, 2002, pp. 268-282.   DOI   ScienceOn
8 K. Scott, W. M. Taama, P. Argyropoulos, K. Sundmacher, "The impact of mass transport and methanol crossover on the direct methanol fuel cell", J. Power Sources, Vol. 83, No. 1-2, 1999, pp. 204-216.   DOI
9 T. Schaffer, V. Hacker, T. Hejze, T. Tschinder, J. O. Besenhard, P. Prenninger, "Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs", J. Power Sources, Vol. 145, No. 2, 2005, pp. 188-198.   DOI   ScienceOn
10 C. C. Yang, S. J. Chiu, C. T. Lin, "Electro chemical performance of an air-breathing direct methanol fuel cell using poly (vinyl alcohol)/ hydroxyapatite composite polymer membrane", J. Power Sources, Vol. 177, No. 1, 2008, pp. 40-49.   DOI   ScienceOn
11 B. Gurau, E. S. Smotkin, "Methanol crossover in direct methanol fuel cells: a link between power and energy density", J. Power Sources, Vol. 112, No. 2, 2002, pp. 339-352.   DOI   ScienceOn
12 S. Eccarius, B. L. Garcia, C. Hebling, J. W. Weidner, "Experimental validation of a methanol crossover model in DMFC applications", J. Power Sources, Vol. 179, No. 2, 2008, pp. 723-733.   DOI   ScienceOn
13 H. S. Lee, B. C. Bae, J. Y. Lee, S. A. Hong, H. Y. Ha, "Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance", Trans. of the Korea Hydrogen and New Energy Society, Vol. 16, No. 1, 2005, pp. 31-39.   과학기술학회마을
14 S. V. Andrian, J. Meusinger, "Process analysis of a liquid-feed direct methanol fuel cell system", J. Power Sources, Vol. 91, No. 2, 2000, pp. 193-201.   DOI   ScienceOn
15 S. Surampidi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. Surya Prakash, G. A. Olah, "Advances in direct oxidation methanol fuel cells", J. Power Sources, Vol. 47, No. 3, 1994, pp. 377-385.   DOI   ScienceOn
16 D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, "Performance of a direct methanol polymer electrolyte fuel cell", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 169-173.   DOI
17 N. Nakagawa, Y. Xiu, "Performance of a direct methanol fuel cell operated at atmospheric pressure", J. Power Sources, Vol. 118, No. 1-2, 2003, pp. 248-255.   DOI   ScienceOn
18 T. I. Valdez, S. R. Narayanan, "Recent studies on methanol crossover in liquid-feed direct methanol fuel cells," 194th meeting of the electrochemical society, Boston, Nov. 1998.